Multiple Least-Square Regression Example                   1
                       Dependent Variable, Y: CEMENT MIX
                                        
                   X1, X2, X3, X4 are four ingredients in mix

          Obs      Y      X1    X2    X3    X4    X1X2    X1X3    X1X4

            1     78.5     7    26     6    60     182     42      420
            2     74.3     1    29    15    52      29     15       52
            3    104.3    11    56     8    47     616     88      517
            4     87.6    11    31     8    47     341     88      517
            5     95.9     7    52     6    33     364     42      231
            6    109.2    11    55     9    22     605     99      242
            7    102.7     3    71    17     6     213     51       18
            8     72.5     1    31    22    44      31     22       44
            9     93.1     2    54    18    22     108     36       44
           10    115.9    21    47     4    26     987     84      546
           11     83.8     1    40    23    34      40     23       34
           12    113.3    11    66     9    12     726     99      132
           13    109.4    10    68     8    12     680     80      120
           14       .     10    70     6    14     700     60      140
           15       .     15    75     4    12    1125     60      180
                    Multiple Least-Square Regression Example                   2
                 General linear model & related residual plots

                               The GLM Procedure

                    Number of Observations Read          15
                    Number of Observations Used          13
                    Multiple Least-Square Regression Example                   3
                 General linear model & related residual plots

                               The GLM Procedure
 
Dependent Variable: Y   

                                       Sum of
 Source                     DF        Squares    Mean Square   F Value   Pr > F

 Model                       4    2670.365050     667.591263    117.64   <.0001

 Error                       8      45.398026       5.674753                   

 Corrected Total            12    2715.763077                                  


               R-Square     Coeff Var      Root MSE        Y Mean

               0.983284      2.496434      2.382174      95.42308


 Source                     DF      Type I SS    Mean Square   F Value   Pr > F

 X1                          1    1450.076328    1450.076328    255.53   <.0001
 X2                          1    1207.782266    1207.782266    212.83   <.0001
 X3                          1       9.793869       9.793869      1.73   0.2254
 X4                          1       2.712588       2.712588      0.48   0.5089


 Source                     DF    Type III SS    Mean Square   F Value   Pr > F

 X1                          1    281.3174755    281.3174755     49.57   0.0001
 X2                          1    163.2592552    163.2592552     28.77   0.0007
 X3                          1      3.1459775      3.1459775      0.55   0.4778
 X4                          1      2.7125876      2.7125876      0.48   0.5089


                                         Standard
       Parameter         Estimate           Error    t Value    Pr > |t|

       Intercept      55.28234314     11.01724868       5.02      0.0010
       X1              1.62976040      0.23147223       7.04      0.0001
       X2              0.58798438      0.10962267       5.36      0.0007
       X3              0.16734770      0.22475814       0.74      0.4778
       X4             -0.07179770      0.10384657      -0.69      0.5089
                    Multiple Least-Square Regression Example                   4
                 General linear model & related residual plots

                               The GLM Procedure

     Observation             Observed          Predicted           Residual

               1          78.50000000        78.67448398        -0.17448398
               2          74.30000000        72.74038564         1.55961436
               3         104.30000000       104.10112263         0.19887737
               4          87.60000000        89.40151301        -1.80151301
               5          95.90000000        95.90061594        -0.00061594
               6         109.20000000       105.47542849         3.72457151
               7         102.70000000       104.33264028        -1.63264028
               8          72.50000000        75.66216990        -3.16216990
               9          93.10000000        91.72572981         1.37427019
              10         115.90000000       115.94522809        -0.04522809
              11          83.80000000        81.83935408         1.96064592
              12         113.30000000       112.66123374         0.63876626
              13         109.40000000       112.04009442        -2.64009442
              14 *          .               112.73777239          .        
              15 *          .               123.63539631          .        

                                    95% Confidence Limits for
                Observation            Mean Predicted Value

                          1          74.94837105     82.40059691
                          2          69.75726883     75.72350246
                          3          98.63416098    109.56808428
                          4          86.62444420     92.17858182
                          5          92.66902393     99.13220794
                          6         103.43385896    107.51699802
                          7         100.97222811    107.69305245
                          8          72.24829215     79.07604766
                          9          89.28384995     94.16760966
                         10         111.31872937    120.57172681
                         11          78.44902289     85.22968528
                         12         110.12969158    115.19277590
                         13         109.27047786    114.80971097
                         14 *       109.51433239    115.96121239
                         15 *       120.01610747    127.25468514


* Observation was not used in this analysis


              Sum of Residuals                         -0.0000000
              Sum of Squared Residuals                 45.3980265
              Sum of Squared Residuals - Error SS      -0.0000000
              PRESS Statistic                         521.1471688
              First Order Autocorrelation              -0.1359120
              Durbin-Watson D                           2.1176203
                    Multiple Least-Square Regression Example                   5
                 General linear model & related residual plots

                    Plot of Y*YHAT.      Symbol used is 'P'.
                    Plot of RESID*YHAT.  Symbol used is 'R'.

  Y |
    |
120 +
    |                                                        P
    |                                                    P
    |                                            P      P
    |
    |                                          P
100 +
    |                                P
    |                           P
    |
    |                        P
    |               P
 80 +           P
    |
    |    P   P
    |
    |
    |
 60 +
    |
    |
    |
    |
    |
 40 +
    |
    |
    |
    |
    |
 20 +
    |
    |
    |
    |
    |               R                            R
  0 +    R      R               R    R         R         R   R
    |        R               R                          R
    |
    |
    |
    |
-20 +
    |
    --+-----------+-----------+-----------+-----------+-----------+-----------+-
     70          80          90          100         110         120         130

                                        YHAT

NOTE: 4 obs had missing values.  2 obs hidden.
                               Forward Regression                              6

                               The REG Procedure
                                 Model: MODEL1
                             Dependent Variable: Y 

             Number of Observations Read                         15
             Number of Observations Used                         13
             Number of Observations with Missing Values           2
 
                           Forward Selection: Step 1


          Variable X1X2 Entered: R-Square = 0.7884 and C(p) = 61.2741


                              Analysis of Variance
 
                                     Sum of           Mean
 Source                   DF        Squares         Square    F Value    Pr > F

 Model                     1     2141.20142     2141.20142      40.99    <.0001
 Error                    11      574.56165       52.23288                     
 Corrected Total          12     2715.76308                                    


                    Parameter     Standard
       Variable      Estimate        Error   Type II SS  F Value  Pr > F

       Intercept     79.34871      3.21263        31864   610.04  <.0001
       X1X2           0.04246      0.00663   2141.20142    40.99  <.0001

                        Bounds on condition number: 1, 1
--------------------------------------------------------------------------------

                           Forward Selection: Step 2


            Variable X2 Entered: R-Square = 0.9677 and C(p) = 3.7308


                              Analysis of Variance
 
                                     Sum of           Mean
 Source                   DF        Squares         Square    F Value    Pr > F

 Model                     2     2628.02762     1314.01381     149.77    <.0001
 Error                    10       87.73545        8.77355                     
 Corrected Total          12     2715.76308                                    


                    Parameter     Standard
       Variable      Estimate        Error   Type II SS  F Value  Pr > F

       Intercept     60.98339      2.79502   4176.65198   476.05  <.0001
       X2             0.47545      0.06383    486.82620    55.49  <.0001
       X1X2           0.03049      0.00316    818.60089    93.30  <.0001
                               Forward Regression                              7

                               The REG Procedure
                                 Model: MODEL1
                             Dependent Variable: Y 
 
                           Forward Selection: Step 2

                   Bounds on condition number: 1.3492, 5.397
--------------------------------------------------------------------------------

                           Forward Selection: Step 3


            Variable X1 Entered: R-Square = 0.9790 and C(p) = 1.9915


                              Analysis of Variance
 
                                     Sum of           Mean
 Source                   DF        Squares         Square    F Value    Pr > F

 Model                     3     2658.60032      886.20011     139.53    <.0001
 Error                     9       57.16276        6.35142                     
 Corrected Total          12     2715.76308                                    


                    Parameter     Standard
       Variable      Estimate        Error   Type II SS  F Value  Pr > F

       Intercept     53.70675      4.08112   1099.93944   173.18  <.0001
       X1             1.27458      0.58095     30.57270     4.81  0.0559
       X2             0.63581      0.09106    309.66576    48.76  <.0001
       X1X2           0.00420      0.01228      0.74172     0.12  0.7404

                   Bounds on condition number: 28.215, 162.22
--------------------------------------------------------------------------------

                           Forward Selection: Step 4


            Variable X4 Entered: R-Square = 0.9826 and C(p) = 2.7694


                              Analysis of Variance
 
                                     Sum of           Mean
 Source                   DF        Squares         Square    F Value    Pr > F

 Model                     4     2668.59260      667.14815     113.15    <.0001
 Error                     8       47.17048        5.89631                     
 Corrected Total          12     2715.76308                                    


                               Forward Regression                              8

                               The REG Procedure
                                 Model: MODEL1
                             Dependent Variable: Y 
 
                           Forward Selection: Step 4

                    Parameter     Standard
       Variable      Estimate        Error   Type II SS  F Value  Pr > F

       Intercept     63.33232      8.37464    337.20901    57.19  <.0001
       X1             1.21827      0.56142     27.76487     4.71  0.0618
       X2             0.51063      0.13017     90.73245    15.39  0.0044
       X4            -0.11727      0.09008      9.99228     1.69  0.2292
       X1X2           0.00574      0.01189      1.37353     0.23  0.6423

                   Bounds on condition number: 28.498, 255.42
--------------------------------------------------------------------------------


 No other variable met the 0.5000 significance level for entry into the model.



                         Summary of Forward Selection
 
        Variable    Number    Partial     Model
 Step   Entered     Vars In   R-Square   R-Square    C(p)     F Value   Pr > F

   1    X1X2            1      0.7884     0.7884    61.2741     40.99   <.0001
   2    X2              2      0.1793     0.9677     3.7308     55.49   <.0001
   3    X1              3      0.0113     0.9790     1.9915      4.81   0.0559
   4    X4              4      0.0037     0.9826     2.7694      1.69   0.2292
                              Backward Regression                              9

                               The REG Procedure
                                 Model: MODEL1
                             Dependent Variable: Y 

             Number of Observations Read                         15
             Number of Observations Used                         13
             Number of Observations with Missing Values           2
 
                          Backward Elimination: Step 0


           All Variables Entered: R-Square = 0.9849 and C(p) = 8.0000


                              Analysis of Variance
 
                                     Sum of           Mean
 Source                   DF        Squares         Square    F Value    Pr > F

 Model                     7     2674.88306      382.12615      46.74    0.0003
 Error                     5       40.88001        8.17600                     
 Corrected Total          12     2715.76308                                    


                    Parameter     Standard
       Variable      Estimate        Error   Type II SS  F Value  Pr > F

       Intercept      2.89001     88.10760      0.00880     0.00  0.9751
       X1             5.71832      6.95186      5.53192     0.68  0.4482
       X2             1.18331      1.03510     10.68509     1.31  0.3047
       X3             0.39744      0.47725      5.67012     0.69  0.4429
       X4             0.55666      1.02214      2.42494     0.30  0.6094
       X1X2          -0.05315      0.09235      2.70798     0.33  0.5899
       X1X3           0.05274      0.08404      3.22026     0.39  0.5578
       X1X4          -0.05635      0.08923      3.26127     0.40  0.5554

                   Bounds on condition number: 2454.4, 35266
--------------------------------------------------------------------------------

                          Backward Elimination: Step 1


            Variable X4 Removed: R-Square = 0.9841 and C(p) = 6.2966


                              Analysis of Variance
 
                                     Sum of           Mean
 Source                   DF        Squares         Square    F Value    Pr > F

 Model                     6     2672.45812      445.40969      61.71    <.0001
 Error                     6       43.30495        7.21749                     
 Corrected Total          12     2715.76308                                    
                              Backward Regression                             10

                               The REG Procedure
                                 Model: MODEL1
                             Dependent Variable: Y 
 
                          Backward Elimination: Step 1

                    Parameter     Standard
       Variable      Estimate        Error   Type II SS  F Value  Pr > F

       Intercept     50.73167      6.36354    458.71950    63.56  0.0002
       X1             1.96787      0.89299     35.04961     4.86  0.0697
       X2             0.62280      0.10352    261.21478    36.19  0.0010
       X3             0.17604      0.23487      4.05439     0.56  0.4819
       X1X2          -0.00368      0.01565      0.39898     0.06  0.8219
       X1X3           0.01972      0.05468      0.93910     0.13  0.7307
       X1X4          -0.00815      0.01053      4.31668     0.60  0.4687

                   Bounds on condition number: 45.877, 641.33
--------------------------------------------------------------------------------

                          Backward Elimination: Step 2


           Variable X1X2 Removed: R-Square = 0.9839 and C(p) = 4.3454


                              Analysis of Variance
 
                                     Sum of           Mean
 Source                   DF        Squares         Square    F Value    Pr > F

 Model                     5     2672.05915      534.41183      85.60    <.0001
 Error                     7       43.70393        6.24342                     
 Corrected Total          12     2715.76308                                    


                    Parameter     Standard
       Variable      Estimate        Error   Type II SS  F Value  Pr > F

       Intercept     51.21222      5.60497    521.22187    83.48  <.0001
       X1             1.77343      0.31331    200.02920    32.04  0.0008
       X2             0.60850      0.07792    380.71800    60.98  0.0001
       X3             0.18419      0.21606      4.53733     0.73  0.4221
       X1X3           0.01750      0.05009      0.76201     0.12  0.7371
       X1X4          -0.00680      0.00823      4.26633     0.68  0.4357

                   Bounds on condition number: 6.5286, 116.17
--------------------------------------------------------------------------------

                          Backward Elimination: Step 3


           Variable X1X3 Removed: R-Square = 0.9836 and C(p) = 2.4386


                              Backward Regression                             11

                               The REG Procedure
                                 Model: MODEL1
                             Dependent Variable: Y 
 
                          Backward Elimination: Step 3

                              Analysis of Variance
 
                                     Sum of           Mean
 Source                   DF        Squares         Square    F Value    Pr > F

 Model                     4     2671.29713      667.82428     120.15    <.0001
 Error                     8       44.46594        5.55824                     
 Corrected Total          12     2715.76308                                    


                    Parameter     Standard
       Variable      Estimate        Error   Type II SS  F Value  Pr > F

       Intercept     50.94043      5.23729    525.83473    94.60  <.0001
       X1             1.82417      0.26194    269.56531    48.50  0.0001
       X2             0.62373      0.06094    582.27711   104.76  <.0001
       X3             0.18721      0.20369      4.69521     0.84  0.3849
       X1X4          -0.00609      0.00752      3.64467     0.66  0.4415

                   Bounds on condition number: 5.1557, 63.591
--------------------------------------------------------------------------------

                          Backward Elimination: Step 4


           Variable X1X4 Removed: R-Square = 0.9823 and C(p) = 0.8844


                              Analysis of Variance
 
                                     Sum of           Mean
 Source                   DF        Squares         Square    F Value    Pr > F

 Model                     3     2667.65246      889.21749     166.34    <.0001
 Error                     9       48.11061        5.34562                     
 Corrected Total          12     2715.76308                                    


                    Parameter     Standard
       Variable      Estimate        Error   Type II SS  F Value  Pr > F

       Intercept     48.19363      3.91330    810.75653   151.67  <.0001
       X1             1.69589      0.20458    367.33211    68.72  <.0001
       X2             0.65691      0.04423   1178.96145   220.55  <.0001
       X3             0.25002      0.18471      9.79387     1.83  0.2089

                   Bounds on condition number: 3.2511, 22.37
--------------------------------------------------------------------------------

                          Backward Elimination: Step 5
                              Backward Regression                             12

                               The REG Procedure
                                 Model: MODEL1
                             Dependent Variable: Y 
 
                          Backward Elimination: Step 5

            Variable X3 Removed: R-Square = 0.9787 and C(p) = 0.0822


                              Analysis of Variance
 
                                     Sum of           Mean
 Source                   DF        Squares         Square    F Value    Pr > F

 Model                     2     2657.85859     1328.92930     229.50    <.0001
 Error                    10       57.90448        5.79045                     
 Corrected Total          12     2715.76308                                    


                    Parameter     Standard
       Variable      Estimate        Error   Type II SS  F Value  Pr > F

       Intercept     52.57735      2.28617   3062.60416   528.91  <.0001
       X1             1.46831      0.12130    848.43186   146.52  <.0001
       X2             0.66225      0.04585   1207.78227   208.58  <.0001

                   Bounds on condition number: 1.0551, 4.2205
--------------------------------------------------------------------------------


      All variables left in the model are significant at the 0.1000 level.



                        Summary of Backward Elimination
 
        Variable    Number    Partial     Model
 Step   Removed     Vars In   R-Square   R-Square    C(p)     F Value   Pr > F

   1    X4              6      0.0009     0.9841     6.2966      0.30   0.6094
   2    X1X2            5      0.0001     0.9839     4.3454      0.06   0.8219
   3    X1X3            4      0.0003     0.9836     2.4386      0.12   0.7371
   4    X1X4            3      0.0013     0.9823     0.8844      0.66   0.4415
   5    X3              2      0.0036     0.9787     0.0822      1.83   0.2089
                              Stepwise Regression                             13

                               The REG Procedure
                                 Model: MODEL1
                             Dependent Variable: Y 

             Number of Observations Read                         15
             Number of Observations Used                         13
             Number of Observations with Missing Values           2
 
                           Stepwise Selection: Step 1


          Variable X1X2 Entered: R-Square = 0.7884 and C(p) = 61.2741


                              Analysis of Variance
 
                                     Sum of           Mean
 Source                   DF        Squares         Square    F Value    Pr > F

 Model                     1     2141.20142     2141.20142      40.99    <.0001
 Error                    11      574.56165       52.23288                     
 Corrected Total          12     2715.76308                                    


                    Parameter     Standard
       Variable      Estimate        Error   Type II SS  F Value  Pr > F

       Intercept     79.34871      3.21263        31864   610.04  <.0001
       X1X2           0.04246      0.00663   2141.20142    40.99  <.0001

                        Bounds on condition number: 1, 1
--------------------------------------------------------------------------------

                           Stepwise Selection: Step 2


            Variable X2 Entered: R-Square = 0.9677 and C(p) = 3.7308


                              Analysis of Variance
 
                                     Sum of           Mean
 Source                   DF        Squares         Square    F Value    Pr > F

 Model                     2     2628.02762     1314.01381     149.77    <.0001
 Error                    10       87.73545        8.77355                     
 Corrected Total          12     2715.76308                                    


                    Parameter     Standard
       Variable      Estimate        Error   Type II SS  F Value  Pr > F

       Intercept     60.98339      2.79502   4176.65198   476.05  <.0001
       X2             0.47545      0.06383    486.82620    55.49  <.0001
       X1X2           0.03049      0.00316    818.60089    93.30  <.0001
                              Stepwise Regression                             14

                               The REG Procedure
                                 Model: MODEL1
                             Dependent Variable: Y 
 
                           Stepwise Selection: Step 2

                   Bounds on condition number: 1.3492, 5.397
--------------------------------------------------------------------------------

                           Stepwise Selection: Step 3


            Variable X1 Entered: R-Square = 0.9790 and C(p) = 1.9915


                              Analysis of Variance
 
                                     Sum of           Mean
 Source                   DF        Squares         Square    F Value    Pr > F

 Model                     3     2658.60032      886.20011     139.53    <.0001
 Error                     9       57.16276        6.35142                     
 Corrected Total          12     2715.76308                                    


                    Parameter     Standard
       Variable      Estimate        Error   Type II SS  F Value  Pr > F

       Intercept     53.70675      4.08112   1099.93944   173.18  <.0001
       X1             1.27458      0.58095     30.57270     4.81  0.0559
       X2             0.63581      0.09106    309.66576    48.76  <.0001
       X1X2           0.00420      0.01228      0.74172     0.12  0.7404

                   Bounds on condition number: 28.215, 162.22
--------------------------------------------------------------------------------

                           Stepwise Selection: Step 4


           Variable X1X2 Removed: R-Square = 0.9787 and C(p) = 0.0822


                              Analysis of Variance
 
                                     Sum of           Mean
 Source                   DF        Squares         Square    F Value    Pr > F

 Model                     2     2657.85859     1328.92930     229.50    <.0001
 Error                    10       57.90448        5.79045                     
 Corrected Total          12     2715.76308                                    


                              Stepwise Regression                             15

                               The REG Procedure
                                 Model: MODEL1
                             Dependent Variable: Y 
 
                           Stepwise Selection: Step 4

                    Parameter     Standard
       Variable      Estimate        Error   Type II SS  F Value  Pr > F

       Intercept     52.57735      2.28617   3062.60416   528.91  <.0001
       X1             1.46831      0.12130    848.43186   146.52  <.0001
       X2             0.66225      0.04585   1207.78227   208.58  <.0001

                   Bounds on condition number: 1.0551, 4.2205
--------------------------------------------------------------------------------


      All variables left in the model are significant at the 0.1500 level.

 No other variable met the 0.1500 significance level for entry into the model.



                         Summary of Stepwise Selection
 
        Variable  Variable  Number  Partial   Model
   Step Entered   Removed   Vars In R-Square R-Square  C(p)   F Value Pr > F

     1  X1X2                    1    0.7884   0.7884  61.2741   40.99 <.0001
     2  X2                      2    0.1793   0.9677   3.7308   55.49 <.0001
     3  X1                      3    0.0113   0.9790   1.9915    4.81 0.0559
     4            X1X2          2    0.0003   0.9787   0.0822    0.12 0.7404
                              R-square Regression                             16

                               The REG Procedure
                                 Model: MODEL1
                             Dependent Variable: Y 
 
                           R-Square Selection Method

             Number of Observations Read                         15
             Number of Observations Used                         13
             Number of Observations with Missing Values           2



              Number in
                Model      R-Square    Variables in Model

                     1       0.7884    X1X2                       
                     1       0.6663    X2                         
                     1       0.6570    X1X3                       
                     1       0.5339    X1                         
                     1       0.5296    X4                         
                     1       0.2859    X3                         
                     1       0.0674    X1X4                       
              ----------------------------------------------------
                     2       0.9787    X1 X2                      
                     2       0.9677    X2 X1X2                    
                     2       0.9491    X4 X1X2                    
                     2       0.9157    X1 X4                      
                     2       0.9045    X4 X1X4                    
                     2       0.8870    X2 X1X3                    
                     2       0.8775    X2 X1X4                    
                     2       0.8707    X4 X1X3                    
                     2       0.8649    X1 X1X2                    
                     2       0.8634    X1X2 X1X4                  
                     2       0.8553    X3 X4                      
                     2       0.8470    X2 X3                      
                     2       0.8249    X3 X1X2                    
                     2       0.7961    X1X2 X1X3                  
                     2       0.7668    X1 X1X4                    
                     2       0.7132    X1X3 X1X4                  
                     2       0.6699    X1 X1X3                    
                     2       0.6663    X2 X4                      
                     2       0.6574    X3 X1X3                    
                     2       0.5482    X1 X3                      
                     2       0.3374    X3 X1X4                    
              ----------------------------------------------------
                     3       0.9823    X1 X2 X3                   
                     3       0.9821    X1 X2 X4                   
                     3       0.9819    X1 X2 X1X4                 
                     3       0.9790    X1 X2 X1X2                 
                     3       0.9787    X1 X2 X1X3                 
                     3       0.9724    X2 X4 X1X2                 
                     3       0.9691    X2 X1X2 X1X4               
                     3       0.9690    X2 X1X2 X1X3               
                     3       0.9679    X2 X3 X1X2                 
                     3       0.9607    X4 X1X2 X1X4               
                     3       0.9545    X4 X1X2 X1X3               
                     3       0.9517    X3 X4 X1X2                 
                     3       0.9492    X1 X4 X1X2                 
                              R-square Regression                             17

                               The REG Procedure
                                 Model: MODEL1
                             Dependent Variable: Y 
 
                           R-Square Selection Method

              Number in
                Model      R-Square    Variables in Model

                     3       0.9381    X2 X4 X1X4                 
                     3       0.9306    X1 X4 X1X3                 
                     3       0.9238    X1 X4 X1X4                 
                     3       0.9232    X1 X3 X4                   
                     3       0.9209    X4 X1X3 X1X4               
                     3       0.9200    X3 X4 X1X4                 
                     3       0.9113    X3 X4 X1X3                 
                     3       0.9069    X2 X1X3 X1X4               
                     3       0.9044    X2 X3 X1X3                 
                     3       0.8950    X2 X4 X1X3                 
                     3       0.8851    X1X2 X1X3 X1X4             
                     3       0.8844    X2 X3 X1X4                 
                     3       0.8797    X2 X3 X4                   
                     3       0.8774    X1 X1X2 X1X3               
                     3       0.8694    X1 X1X2 X1X4               
                     3       0.8674    X1 X3 X1X2                 
                     3       0.8639    X3 X1X2 X1X4               
                     3       0.8429    X1 X1X3 X1X4               
                     3       0.8364    X3 X1X2 X1X3               
                     3       0.7692    X1 X3 X1X4                 
                     3       0.7403    X3 X1X3 X1X4               
                     3       0.6841    X1 X3 X1X3                 
              ----------------------------------------------------
                     4       0.9836    X1 X2 X3 X1X4              
                     4       0.9833    X1 X2 X3 X4                
                     4       0.9827    X2 X4 X1X2 X1X4            
                     4       0.9826    X1 X2 X4 X1X2              
                     4       0.9824    X1 X2 X4 X1X4              
                     4       0.9824    X1 X2 X3 X1X2              
                     4       0.9823    X1 X2 X3 X1X3              
                     4       0.9823    X1 X2 X4 X1X3              
                     4       0.9822    X1 X2 X1X3 X1X4            
                     4       0.9821    X1 X2 X1X2 X1X4            
                     4       0.9806    X1 X4 X1X2 X1X4            
                     4       0.9790    X1 X2 X1X2 X1X3            
                     4       0.9746    X2 X4 X1X2 X1X3            
                     4       0.9728    X2 X3 X4 X1X2              
                     4       0.9707    X2 X3 X1X2 X1X4            
                     4       0.9696    X2 X1X2 X1X3 X1X4          
                     4       0.9695    X2 X3 X1X2 X1X3            
                     4       0.9616    X4 X1X2 X1X3 X1X4          
                     4       0.9609    X3 X4 X1X2 X1X4            
                     4       0.9561    X3 X4 X1X2 X1X3            
                     4       0.9550    X1 X4 X1X2 X1X3            
                     4       0.9522    X1 X3 X4 X1X2              
                     4       0.9459    X2 X4 X1X3 X1X4            
                     4       0.9448    X2 X3 X4 X1X4              
                     4       0.9352    X1 X3 X4 X1X3              
                     4       0.9334    X1 X4 X1X3 X1X4            
                              R-square Regression                             18

                               The REG Procedure
                                 Model: MODEL1
                             Dependent Variable: Y 
 
                           R-Square Selection Method

              Number in
                Model      R-Square    Variables in Model

                     4       0.9310    X3 X4 X1X3 X1X4            
                     4       0.9294    X1 X3 X4 X1X4              
                     4       0.9262    X2 X3 X4 X1X3              
                     4       0.9103    X2 X3 X1X3 X1X4            
                     4       0.8875    X1 X1X2 X1X3 X1X4          
                     4       0.8854    X3 X1X2 X1X3 X1X4          
                     4       0.8807    X1 X3 X1X2 X1X3            
                     4       0.8700    X1 X3 X1X2 X1X4            
                     4       0.8437    X1 X3 X1X3 X1X4            
              ----------------------------------------------------
                     5       0.9839    X1 X2 X3 X1X3 X1X4         
                     5       0.9837    X1 X2 X3 X1X2 X1X4         
                     5       0.9837    X1 X2 X3 X4 X1X4           
                     5       0.9836    X1 X2 X3 X4 X1X2           
                     5       0.9834    X1 X2 X3 X4 X1X3           
                     5       0.9829    X2 X3 X4 X1X2 X1X4         
                     5       0.9828    X1 X2 X4 X1X2 X1X3         
                     5       0.9828    X1 X2 X4 X1X2 X1X4         
                     5       0.9827    X1 X2 X4 X1X3 X1X4         
                     5       0.9827    X2 X4 X1X2 X1X3 X1X4       
                     5       0.9826    X1 X2 X1X2 X1X3 X1X4       
                     5       0.9825    X1 X2 X3 X1X2 X1X3         
                     5       0.9809    X1 X3 X4 X1X2 X1X4         
                     5       0.9808    X1 X4 X1X2 X1X3 X1X4       
                     5       0.9748    X2 X3 X4 X1X2 X1X3         
                     5       0.9711    X2 X3 X1X2 X1X3 X1X4       
                     5       0.9618    X3 X4 X1X2 X1X3 X1X4       
                     5       0.9571    X1 X3 X4 X1X2 X1X3         
                     5       0.9506    X2 X3 X4 X1X3 X1X4         
                     5       0.9374    X1 X3 X4 X1X3 X1X4         
                     5       0.8879    X1 X3 X1X2 X1X3 X1X4       
              ----------------------------------------------------
                     6       0.9841    X1 X2 X3 X1X2 X1X3 X1X4    
                     6       0.9839    X1 X2 X3 X4 X1X3 X1X4      
                     6       0.9838    X1 X2 X3 X4 X1X2 X1X4      
                     6       0.9837    X1 X2 X3 X4 X1X2 X1X3      
                     6       0.9829    X2 X3 X4 X1X2 X1X3 X1X4    
                     6       0.9829    X1 X2 X4 X1X2 X1X3 X1X4    
                     6       0.9810    X1 X3 X4 X1X2 X1X3 X1X4    
              ----------------------------------------------------
                     7       0.9849    X1 X2 X3 X4 X1X2 X1X3 X1X4 

 
                          Adjusted R-square Regression                        19

                               The REG Procedure
                                 Model: MODEL1
                             Dependent Variable: Y 
 
                       Adjusted R-Square Selection Method

             Number of Observations Read                         15
             Number of Observations Used                         13
             Number of Observations with Missing Values           2



        Number in    Adjusted
          Model      R-Square    R-Square    Variables in Model

               3       0.9764      0.9823    X1 X2 X3                   
               3       0.9762      0.9821    X1 X2 X4                   
               3       0.9759      0.9819    X1 X2 X1X4                 
               4       0.9754      0.9836    X1 X2 X3 X1X4              
               4       0.9749      0.9833    X1 X2 X3 X4                
               2       0.9744      0.9787    X1 X2                      
               4       0.9740      0.9827    X2 X4 X1X2 X1X4            
               4       0.9739      0.9826    X1 X2 X4 X1X2              
               4       0.9736      0.9824    X1 X2 X4 X1X4              
               4       0.9736      0.9824    X1 X2 X3 X1X2              
               4       0.9735      0.9823    X1 X2 X3 X1X3              
               4       0.9735      0.9823    X1 X2 X4 X1X3              
               4       0.9734      0.9822    X1 X2 X1X3 X1X4            
               4       0.9732      0.9821    X1 X2 X1X2 X1X4            
               5       0.9724      0.9839    X1 X2 X3 X1X3 X1X4         
               5       0.9721      0.9837    X1 X2 X3 X1X2 X1X4         
               5       0.9720      0.9837    X1 X2 X3 X4 X1X4           
               3       0.9719      0.9790    X1 X2 X1X2                 
               5       0.9718      0.9836    X1 X2 X3 X4 X1X2           
               5       0.9716      0.9834    X1 X2 X3 X4 X1X3           
               3       0.9716      0.9787    X1 X2 X1X3                 
               4       0.9710      0.9806    X1 X4 X1X2 X1X4            
               5       0.9707      0.9829    X2 X3 X4 X1X2 X1X4         
               5       0.9706      0.9828    X1 X2 X4 X1X2 X1X3         
               5       0.9705      0.9828    X1 X2 X4 X1X2 X1X4         
               5       0.9704      0.9827    X1 X2 X4 X1X3 X1X4         
               5       0.9704      0.9827    X2 X4 X1X2 X1X3 X1X4       
               5       0.9701      0.9826    X1 X2 X1X2 X1X3 X1X4       
               5       0.9699      0.9825    X1 X2 X3 X1X2 X1X3         
               4       0.9684      0.9790    X1 X2 X1X2 X1X3            
               6       0.9681      0.9841    X1 X2 X3 X1X2 X1X3 X1X4    
               6       0.9679      0.9839    X1 X2 X3 X4 X1X3 X1X4      
               6       0.9675      0.9838    X1 X2 X3 X4 X1X2 X1X4      
               6       0.9675      0.9837    X1 X2 X3 X4 X1X2 X1X3      
               5       0.9672      0.9809    X1 X3 X4 X1X2 X1X4         
               5       0.9671      0.9808    X1 X4 X1X2 X1X3 X1X4       
               6       0.9658      0.9829    X2 X3 X4 X1X2 X1X3 X1X4    
               6       0.9657      0.9829    X1 X2 X4 X1X2 X1X3 X1X4    
               7       0.9639      0.9849    X1 X2 X3 X4 X1X2 X1X3 X1X4 
               3       0.9632      0.9724    X2 X4 X1X2                 
               6       0.9620      0.9810    X1 X3 X4 X1X2 X1X3 X1X4    
               4       0.9618      0.9746    X2 X4 X1X2 X1X3            
               2       0.9612      0.9677    X2 X1X2                    
                          Adjusted R-square Regression                        20

                               The REG Procedure
                                 Model: MODEL1
                             Dependent Variable: Y 
 
                       Adjusted R-Square Selection Method

        Number in    Adjusted
          Model      R-Square    R-Square    Variables in Model

               4       0.9592      0.9728    X2 X3 X4 X1X2              
               3       0.9588      0.9691    X2 X1X2 X1X4               
               3       0.9587      0.9690    X2 X1X2 X1X3               
               3       0.9572      0.9679    X2 X3 X1X2                 
               5       0.9568      0.9748    X2 X3 X4 X1X2 X1X3         
               4       0.9561      0.9707    X2 X3 X1X2 X1X4            
               4       0.9544      0.9696    X2 X1X2 X1X3 X1X4          
               4       0.9542      0.9695    X2 X3 X1X2 X1X3            
               5       0.9505      0.9711    X2 X3 X1X2 X1X3 X1X4       
               3       0.9475      0.9607    X4 X1X2 X1X4               
               4       0.9424      0.9616    X4 X1X2 X1X3 X1X4          
               4       0.9413      0.9609    X3 X4 X1X2 X1X4            
               3       0.9394      0.9545    X4 X1X2 X1X3               
               2       0.9389      0.9491    X4 X1X2                    
               3       0.9355      0.9517    X3 X4 X1X2                 
               5       0.9346      0.9618    X3 X4 X1X2 X1X3 X1X4       
               4       0.9342      0.9561    X3 X4 X1X2 X1X3            
               4       0.9325      0.9550    X1 X4 X1X2 X1X3            
               3       0.9323      0.9492    X1 X4 X1X2                 
               4       0.9283      0.9522    X1 X3 X4 X1X2              
               5       0.9264      0.9571    X1 X3 X4 X1X2 X1X3         
               4       0.9188      0.9459    X2 X4 X1X3 X1X4            
               3       0.9174      0.9381    X2 X4 X1X4                 
               4       0.9172      0.9448    X2 X3 X4 X1X4              
               5       0.9154      0.9506    X2 X3 X4 X1X3 X1X4         
               3       0.9074      0.9306    X1 X4 X1X3                 
               4       0.9027      0.9352    X1 X3 X4 X1X3              
               4       0.9001      0.9334    X1 X4 X1X3 X1X4            
               2       0.8989      0.9157    X1 X4                      
               3       0.8984      0.9238    X1 X4 X1X4                 
               3       0.8976      0.9232    X1 X3 X4                   
               4       0.8965      0.9310    X3 X4 X1X3 X1X4            
               3       0.8945      0.9209    X4 X1X3 X1X4               
               4       0.8941      0.9294    X1 X3 X4 X1X4              
               3       0.8934      0.9200    X3 X4 X1X4                 
               5       0.8927      0.9374    X1 X3 X4 X1X3 X1X4         
               4       0.8894      0.9262    X2 X3 X4 X1X3              
               2       0.8853      0.9045    X4 X1X4                    
               3       0.8817      0.9113    X3 X4 X1X3                 
               3       0.8759      0.9069    X2 X1X3 X1X4               
               3       0.8725      0.9044    X2 X3 X1X3                 
               4       0.8654      0.9103    X2 X3 X1X3 X1X4            
               2       0.8644      0.8870    X2 X1X3                    
               3       0.8600      0.8950    X2 X4 X1X3                 
               2       0.8531      0.8775    X2 X1X4                    
               3       0.8468      0.8851    X1X2 X1X3 X1X4             
               3       0.8458      0.8844    X2 X3 X1X4                 
               2       0.8449      0.8707    X4 X1X3                    
               3       0.8396      0.8797    X2 X3 X4                   
                          Adjusted R-square Regression                        21

                               The REG Procedure
                                 Model: MODEL1
                             Dependent Variable: Y 
 
                       Adjusted R-Square Selection Method

        Number in    Adjusted
          Model      R-Square    R-Square    Variables in Model

               2       0.8379      0.8649    X1 X1X2                    
               3       0.8365      0.8774    X1 X1X2 X1X3               
               2       0.8360      0.8634    X1X2 X1X4                  
               4       0.8312      0.8875    X1 X1X2 X1X3 X1X4          
               4       0.8281      0.8854    X3 X1X2 X1X3 X1X4          
               2       0.8264      0.8553    X3 X4                      
               3       0.8258      0.8694    X1 X1X2 X1X4               
               3       0.8233      0.8674    X1 X3 X1X2                 
               4       0.8210      0.8807    X1 X3 X1X2 X1X3            
               3       0.8186      0.8639    X3 X1X2 X1X4               
               2       0.8164      0.8470    X2 X3                      
               5       0.8078      0.8879    X1 X3 X1X2 X1X3 X1X4       
               4       0.8051      0.8700    X1 X3 X1X2 X1X4            
               3       0.7905      0.8429    X1 X1X3 X1X4               
               2       0.7898      0.8249    X3 X1X2                    
               3       0.7818      0.8364    X3 X1X2 X1X3               
               1       0.7692      0.7884    X1X2                       
               4       0.7656      0.8437    X1 X3 X1X3 X1X4            
               2       0.7553      0.7961    X1X2 X1X3                  
               2       0.7201      0.7668    X1 X1X4                    
               3       0.6923      0.7692    X1 X3 X1X4                 
               2       0.6559      0.7132    X1X3 X1X4                  
               3       0.6537      0.7403    X3 X1X3 X1X4               
               1       0.6359      0.6663    X2                         
               1       0.6259      0.6570    X1X3                       
               2       0.6038      0.6699    X1 X1X3                    
               2       0.5996      0.6663    X2 X4                      
               2       0.5889      0.6574    X3 X1X3                    
               3       0.5788      0.6841    X1 X3 X1X3                 
               1       0.4916      0.5339    X1                         
               1       0.4868      0.5296    X4                         
               2       0.4578      0.5482    X1 X3                      
               1       0.2210      0.2859    X3                         
               2       0.2049      0.3374    X3 X1X4                    
               1       -.0174      0.0674    X1X4                       

 
                       Mallows. Cp statistics Regression                      22

                               The REG Procedure
                                 Model: MODEL1
                             Dependent Variable: Y 
 
                             C(p) Selection Method

             Number of Observations Read                         15
             Number of Observations Used                         13
             Number of Observations with Missing Values           2



        Number in
          Model          C(p)    R-Square    Variables in Model

               2       0.0822      0.9787    X1 X2                      
               3       0.8844      0.9823    X1 X2 X3                   
               3       0.9374      0.9821    X1 X2 X4                   
               3       1.0129      0.9819    X1 X2 X1X4                 
               3       1.9915      0.9790    X1 X2 X1X2                 
               3       2.0779      0.9787    X1 X2 X1X3                 
               4       2.4386      0.9836    X1 X2 X3 X1X4              
               4       2.5526      0.9833    X1 X2 X3 X4                
               4       2.7478      0.9827    X2 X4 X1X2 X1X4            
               4       2.7694      0.9826    X1 X2 X4 X1X2              
               4       2.8352      0.9824    X1 X2 X4 X1X4              
               4       2.8410      0.9824    X1 X2 X3 X1X2              
               4       2.8672      0.9823    X1 X2 X3 X1X3              
               4       2.8711      0.9823    X1 X2 X4 X1X3              
               4       2.9003      0.9822    X1 X2 X1X3 X1X4            
               4       2.9409      0.9821    X1 X2 X1X2 X1X4            
               4       3.4275      0.9806    X1 X4 X1X2 X1X4            
               2       3.7308      0.9677    X2 X1X2                    
               4       3.9876      0.9790    X1 X2 X1X2 X1X3            
               3       4.1653      0.9724    X2 X4 X1X2                 
               5       4.3454      0.9839    X1 X2 X3 X1X3 X1X4         
               5       4.4115      0.9837    X1 X2 X3 X1X2 X1X4         
               5       4.4231      0.9837    X1 X2 X3 X4 X1X4           
               5       4.4552      0.9836    X1 X2 X3 X4 X1X2           
               5       4.4986      0.9834    X1 X2 X3 X4 X1X3           
               5       4.6800      0.9829    X2 X3 X4 X1X2 X1X4         
               5       4.7013      0.9828    X1 X2 X4 X1X2 X1X3         
               5       4.7217      0.9828    X1 X2 X4 X1X2 X1X4         
               5       4.7316      0.9827    X1 X2 X4 X1X3 X1X4         
               5       4.7435      0.9827    X2 X4 X1X2 X1X3 X1X4       
               5       4.7925      0.9826    X1 X2 X1X2 X1X3 X1X4       
               5       4.8246      0.9825    X1 X2 X3 X1X2 X1X3         
               3       5.2655      0.9691    X2 X1X2 X1X4               
               3       5.2965      0.9690    X2 X1X2 X1X3               
               5       5.3582      0.9809    X1 X3 X4 X1X2 X1X4         
               5       5.3770      0.9808    X1 X4 X1X2 X1X3 X1X4       
               4       5.4498      0.9746    X2 X4 X1X2 X1X3            
               3       5.6542      0.9679    X2 X3 X1X2                 
               4       6.0340      0.9728    X2 X3 X4 X1X2              
               6       6.2966      0.9841    X1 X2 X3 X1X2 X1X3 X1X4    
               6       6.3312      0.9839    X1 X2 X3 X4 X1X3 X1X4      
               6       6.3939      0.9838    X1 X2 X3 X4 X1X2 X1X4      
               6       6.3989      0.9837    X1 X2 X3 X4 X1X2 X1X3      
                       Mallows. Cp statistics Regression                      23

                               The REG Procedure
                                 Model: MODEL1
                             Dependent Variable: Y 
 
                             C(p) Selection Method

        Number in
          Model          C(p)    R-Square    Variables in Model

               6       6.6766      0.9829    X2 X3 X4 X1X2 X1X3 X1X4    
               6       6.6935      0.9829    X1 X2 X4 X1X2 X1X3 X1X4    
               4       6.7158      0.9707    X2 X3 X1X2 X1X4            
               4       7.0967      0.9696    X2 X1X2 X1X3 X1X4          
               4       7.1416      0.9695    X2 X3 X1X2 X1X3            
               6       7.3069      0.9810    X1 X3 X4 X1X2 X1X3 X1X4    
               5       7.3790      0.9748    X2 X3 X4 X1X2 X1X3         
               7       8.0000      0.9849    X1 X2 X3 X4 X1X2 X1X3 X1X4 
               3       8.0704      0.9607    X4 X1X2 X1X4               
               5       8.5835      0.9711    X2 X3 X1X2 X1X3 X1X4       
               4       9.7541      0.9616    X4 X1X2 X1X3 X1X4          
               2       9.8988      0.9491    X4 X1X2                    
               4       9.9879      0.9609    X3 X4 X1X2 X1X4            
               3      10.1005      0.9545    X4 X1X2 X1X3               
               3      11.0583      0.9517    X3 X4 X1X2                 
               4      11.5737      0.9561    X3 X4 X1X2 X1X3            
               5      11.6746      0.9618    X3 X4 X1X2 X1X3 X1X4       
               3      11.8668      0.9492    X1 X4 X1X2                 
               4      11.9555      0.9550    X1 X4 X1X2 X1X3            
               4      12.8843      0.9522    X1 X3 X4 X1X2              
               5      13.2583      0.9571    X1 X3 X4 X1X2 X1X3         
               4      14.9833      0.9459    X2 X4 X1X3 X1X4            
               4      15.3359      0.9448    X2 X3 X4 X1X4              
               5      15.4005      0.9506    X2 X3 X4 X1X3 X1X4         
               3      15.5731      0.9381    X2 X4 X1X4                 
               3      18.0609      0.9306    X1 X4 X1X3                 
               4      18.5357      0.9352    X1 X3 X4 X1X3              
               4      19.1239      0.9334    X1 X4 X1X3 X1X4            
               5      19.7923      0.9374    X1 X3 X4 X1X3 X1X4         
               4      19.9162      0.9310    X3 X4 X1X3 X1X4            
               3      20.3025      0.9238    X1 X4 X1X4                 
               4      20.4424      0.9294    X1 X3 X4 X1X4              
               3      20.5207      0.9232    X1 X3 X4                   
               2      20.9909      0.9157    X1 X4                      
               3      21.2845      0.9209    X4 X1X3 X1X4               
               4      21.4970      0.9262    X2 X3 X4 X1X3              
               3      21.5581      0.9200    X3 X4 X1X4                 
               3      24.4715      0.9113    X3 X4 X1X3                 
               2      24.7370      0.9045    X4 X1X4                    
               3      25.9259      0.9069    X2 X1X3 X1X4               
               3      26.7706      0.9044    X2 X3 X1X3                 
               4      26.8108      0.9103    X2 X3 X1X3 X1X4            
               3      29.8851      0.8950    X2 X4 X1X3                 
               2      30.5371      0.8870    X2 X1X3                    
               3      33.1779      0.8851    X1X2 X1X3 X1X4             
               3      33.4089      0.8844    X2 X3 X1X4                 
               2      33.6739      0.8775    X2 X1X4                    
               4      34.3770      0.8875    X1 X1X2 X1X3 X1X4          
               3      34.9603      0.8797    X2 X3 X4                   
                       Mallows. Cp statistics Regression                      24

                               The REG Procedure
                                 Model: MODEL1
                             Dependent Variable: Y 
 
                             C(p) Selection Method

        Number in
          Model          C(p)    R-Square    Variables in Model

               4      35.0728      0.8854    X3 X1X2 X1X3 X1X4          
               3      35.7390      0.8774    X1 X1X2 X1X3               
               2      35.9367      0.8707    X4 X1X3                    
               5      36.2456      0.8879    X1 X3 X1X2 X1X3 X1X4       
               4      36.6364      0.8807    X1 X3 X1X2 X1X3            
               2      37.8665      0.8649    X1 X1X2                    
               2      38.3831      0.8634    X1X2 X1X4                  
               3      38.3963      0.8694    X1 X1X2 X1X4               
               3      39.0297      0.8674    X1 X3 X1X2                 
               4      40.1691      0.8700    X1 X3 X1X2 X1X4            
               3      40.1992      0.8639    X3 X1X2 X1X4               
               2      41.0539      0.8553    X3 X4                      
               2      43.8124      0.8470    X2 X3                      
               3      47.1803      0.8429    X1 X1X3 X1X4               
               4      48.9107      0.8437    X1 X3 X1X3 X1X4            
               3      49.3578      0.8364    X3 X1X2 X1X3               
               2      51.1709      0.8249    X3 X1X2                    
               2      60.7444      0.7961    X1X2 X1X3                  
               1      61.2741      0.7884    X1X2                       
               2      70.4766      0.7668    X1 X1X4                    
               3      71.6564      0.7692    X1 X3 X1X4                 
               3      81.2685      0.7403    X3 X1X3 X1X4               
               2      88.2488      0.7132    X1X3 X1X4                  
               3      99.9179      0.6841    X1 X3 X1X3                 
               1     101.8532      0.6663    X2                         
               2     102.6611      0.6699    X1 X1X3                    
               2     103.8384      0.6663    X2 X4                      
               1     104.9217      0.6570    X1X3                       
               2     106.7916      0.6574    X3 X1X3                    
               2     143.0821      0.5482    X1 X3                      
               1     145.8051      0.5339    X1                         
               1     147.2482      0.5296    X4                         
               2     213.0825      0.3374    X3 X1X4                    
               1     228.2064      0.2859    X3                         
               1     300.7848      0.0674    X1X4                       

 
         Stepwise Regression with No Int. and other Optional Statistics       25

                               The REG Procedure
                                 Model: MODEL1
                             Dependent Variable: Y 

             Number of Observations Read                         15
             Number of Observations Used                         13
             Number of Observations with Missing Values           2
 
                           Stepwise Selection: Step 1


           Variable X2 Entered: R-Square = 0.9614 and C(p) = 675.0274

NOTE: No intercept in model. R-Square is redefined.

                              Analysis of Variance
 
                                     Sum of           Mean
 Source                   DF        Squares         Square    F Value    Pr > F

 Model                     1         116413         116413     298.80    <.0001
 Error                    12     4675.14075      389.59506                     
 Uncorrected Total        13         121088                                    


                    Parameter     Standard
       Variable      Estimate        Error   Type II SS  F Value  Pr > F

       X2             1.87679      0.10857       116413   298.80  <.0001

                        Bounds on condition number: 1, 1
--------------------------------------------------------------------------------

                           Stepwise Selection: Step 2


           Variable X4 Entered: R-Square = 0.9895 and C(p) = 177.8678

NOTE: No intercept in model. R-Square is redefined.

                              Analysis of Variance
 
                                     Sum of           Mean
 Source                   DF        Squares         Square    F Value    Pr > F

 Model                     2         119815          59907     517.47    <.0001
 Error                    11     1273.46733      115.76976                     
 Uncorrected Total        13         121088                                    


         Stepwise Regression with No Int. and other Optional Statistics       26

                               The REG Procedure
                                 Model: MODEL1
                             Dependent Variable: Y 
 
                           Stepwise Selection: Step 2

                    Parameter     Standard
       Variable      Estimate        Error   Type II SS  F Value  Pr > F

       X2             1.53355      0.08667        36242   313.05  <.0001
       X4             0.65759      0.12131   3401.67341    29.38  0.0002

                   Bounds on condition number: 2.1446, 8.5786
--------------------------------------------------------------------------------

                           Stepwise Selection: Step 3


           Variable X1 Entered: R-Square = 0.9962 and C(p) = 59.6483

NOTE: No intercept in model. R-Square is redefined.

                              Analysis of Variance
 
                                     Sum of           Mean
 Source                   DF        Squares         Square    F Value    Pr > F

 Model                     3         120634          40211     885.33    <.0001
 Error                    10      454.19509       45.41951                     
 Uncorrected Total        13         121088                                    


                    Parameter     Standard
       Variable      Estimate        Error   Type II SS  F Value  Pr > F

       X1             1.44826      0.34100    819.27225    18.04  0.0017
       X2             1.35129      0.06920        17319   381.31  <.0001
       X4             0.59354      0.07747   2666.31355    58.70  <.0001

                   Bounds on condition number: 3.4846, 25.889
--------------------------------------------------------------------------------

                           Stepwise Selection: Step 4


           Variable X3 Entered: R-Square = 0.9984 and C(p) = 22.6279

NOTE: No intercept in model. R-Square is redefined.

         Stepwise Regression with No Int. and other Optional Statistics       27

                               The REG Procedure
                                 Model: MODEL1
                             Dependent Variable: Y 
 
                           Stepwise Selection: Step 4

                              Analysis of Variance
 
                                     Sum of           Mean
 Source                   DF        Squares         Square    F Value    Pr > F

 Model                     4         120900          30225    1444.80    <.0001
 Error                     9      188.27873       20.91986                     
 Uncorrected Total        13         121088                                    


                    Parameter     Standard
       Variable      Estimate        Error   Type II SS  F Value  Pr > F

       X1             2.36137      0.34518    979.01317    46.80  <.0001
       X2             1.08834      0.08744   3241.02438   154.93  <.0001
       X3             1.01494      0.28467    265.91636    12.71  0.0061
       X4             0.41313      0.07297    670.58841    32.06  0.0003

                   Bounds on condition number: 12.079, 126.97
--------------------------------------------------------------------------------


      All variables left in the model are significant at the 0.1500 level.

 No other variable met the 0.1500 significance level for entry into the model.


NOTE: No intercept in model. R-Square is redefined.

                         Summary of Stepwise Selection
 
        Variable  Variable  Number  Partial   Model
   Step Entered   Removed   Vars In R-Square R-Square  C(p)   F Value Pr > F

     1  X2                      1    0.9614   0.9614  675.027  298.80 <.0001
     2  X4                      2    0.0281   0.9895  177.868   29.38 0.0002
     3  X1                      3    0.0068   0.9962  59.6483   18.04 0.0017
     4  X3                      4    0.0022   0.9984  22.6279   12.71 0.0061
         Stepwise Regression with No Int. and other Optional Statistics       28

                               The REG Procedure
                                 Model: MODEL1
                             Dependent Variable: Y 

             Number of Observations Read                         15
             Number of Observations Used                         13
             Number of Observations with Missing Values           2


              NOTE: No intercept in model. R-Square is redefined.

                              Analysis of Variance
 
                                     Sum of           Mean
 Source                   DF        Squares         Square    F Value    Pr > F

 Model                     4         120900          30225    1444.80    <.0001
 Error                     9      188.27873       20.91986                     
 Uncorrected Total        13         121088                                    


              Root MSE              4.57382    R-Square     0.9984
              Dependent Mean       95.42308    Adj R-Sq     0.9978
              Coeff Var             4.79320                       


                              Parameter Estimates
 
                    Parameter      Standard
 Variable    DF      Estimate         Error   t Value   Pr > |t|     Type I SS

 X1           1       2.36137       0.34518      6.84     <.0001         88359
 X2           1       1.08834       0.08744     12.45     <.0001         29608
 X3           1       1.01494       0.28467      3.57     0.0061    2261.64150
 X4           1       0.41313       0.07297      5.66     0.0003     670.58841

                              Parameter Estimates
 
                                   Standardized
   Variable    DF    Type II SS        Estimate       95% Confidence Limits

   X1           1     979.01317         0.22902        1.58051        3.14222
   X2           1    3241.02438         0.56859        0.89054        1.28614
   X3           1     265.91636         0.13967        0.37097        1.65892
   X4           1     670.58841         0.15421        0.24807        0.57820


                            Covariance of Estimates
 
Variable                X1                X2                X3                X4

X1            0.1191509082      -0.025629347      0.0729084214      -0.015328061
X2            -0.025629347      0.0076454602      -0.020996144      0.0026420658
X3            0.0729084214      -0.020996144      0.0810396971      -0.014404936
X4            -0.015328061      0.0026420658      -0.014404936      0.0053245835
         Stepwise Regression with No Int. and other Optional Statistics       29

                               The REG Procedure
                                 Model: MODEL1
                             Dependent Variable: Y 

                            Correlation of Estimates
 
Variable                X1                X2                X3                X4

X1                  1.0000           -0.8492            0.7420           -0.6085
X2                 -0.8492            1.0000           -0.8435            0.4141
X3                  0.7420           -0.8435            1.0000           -0.6935
X4                 -0.6085            0.4141           -0.6935            1.0000