Multiple Means Comparison (MMC) 1 ------------------------------------ Example #1 -- CR design ------------------------------------ The ANOVA Procedure Class Level Information Class Levels Values COTTON 5 15 20 25 30 35 Number of observations 25 Multiple Means Comparison (MMC) 2 ------------------------------------ Example #1 -- CR design ------------------------------------ The ANOVA Procedure Dependent Variable: STRENGTH Sum of Source DF Squares Mean Square F Value Pr > F Model 4 475.7600000 118.9400000 14.76 <.0001 Error 20 161.2000000 8.0600000 Corrected Total 24 636.9600000 R-Square Coeff Var Root MSE STRENGTH Mean 0.746923 18.87642 2.839014 15.04000 Source DF Anova SS Mean Square F Value Pr > F COTTON 4 475.7600000 118.9400000 14.76 <.0001 Multiple Means Comparison (MMC) 3 ------------------------------------ Example #1 -- CR design ------------------------------------ The ANOVA Procedure Duncan's Multiple Range Test for STRENGTH NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. Alpha 0.05 Error Degrees of Freedom 20 Error Mean Square 8.06 Number of Means 2 3 4 5 Critical Range 3.745 3.931 4.050 4.132 Means with the same letter are not significantly different. Duncan Grouping Mean N COTTON A 21.600 5 30 B 17.600 5 25 B B 15.400 5 20 C 10.800 5 35 C C 9.800 5 15 Multiple Means Comparison (MMC) 4 ------------------------------------ Example #2 -- RCB design ------------------------------------ The ANOVA Procedure Class Level Information Class Levels Values DAYS 4 1 2 3 4 SOLUTION 3 1 2 3 Number of observations 12 Multiple Means Comparison (MMC) 5 ------------------------------------ Example #2 -- RCB design ------------------------------------ The ANOVA Procedure Dependent Variable: EFFECTNS Sum of Source DF Squares Mean Square F Value Pr > F Model 5 1810.416667 362.083333 41.91 0.0001 Error 6 51.833333 8.638889 Corrected Total 11 1862.250000 R-Square Coeff Var Root MSE EFFECTNS Mean 0.972166 15.67573 2.939199 18.75000 Source DF Anova SS Mean Square F Value Pr > F DAYS 3 1106.916667 368.972222 42.71 0.0002 SOLUTION 2 703.500000 351.750000 40.72 0.0003 Multiple Means Comparison (MMC) 6 ------------------------------------ Example #2 -- RCB design ------------------------------------ The ANOVA Procedure Duncan's Multiple Range Test for EFFECTNS NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. Alpha 0.05 Error Degrees of Freedom 6 Error Mean Square 8.638889 Number of Means 2 3 4 Critical Range 5.872 6.086 6.192 Means with the same letter are not significantly different. Duncan Grouping Mean N DAYS A 35.000 3 4 B 16.667 3 2 B B 12.000 3 3 B B 11.333 3 1 Multiple Means Comparison (MMC) 7 ------------------------------------ Example #2 -- RCB design ------------------------------------ The ANOVA Procedure Duncan's Multiple Range Test for EFFECTNS NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. Alpha 0.05 Error Degrees of Freedom 6 Error Mean Square 8.638889 Number of Means 2 3 Critical Range 5.085 5.271 Means with the same letter are not significantly different. Duncan Grouping Mean N SOLUTION A 25.250 4 2 A A 23.000 4 1 B 8.000 4 3 Multiple Means Comparison (MMC) 8 ------------------------------------ Example #3 -- Latin Square Design ------------------------------------ The ANOVA Procedure Class Level Information Class Levels Values BATCH 5 1 2 3 4 5 DAY 5 1 2 3 4 5 CATALYST 5 A B C D E Number of observations 25 Multiple Means Comparison (MMC) 9 ------------------------------------ Example #3 -- Latin Square Design ------------------------------------ The ANOVA Procedure Dependent Variable: REACTIME Sum of Source DF Squares Mean Square F Value Pr > F Model 12 169.1200000 14.0933333 4.51 0.0072 Error 12 37.5200000 3.1266667 Corrected Total 24 206.6400000 R-Square Coeff Var Root MSE REACTIME Mean 0.818428 30.07208 1.768238 5.880000 Source DF Anova SS Mean Square F Value Pr > F BATCH 4 15.4400000 3.8600000 1.23 0.3476 DAY 4 12.2400000 3.0600000 0.98 0.4550 CATALYST 4 141.4400000 35.3600000 11.31 0.0005 Multiple Means Comparison (MMC) 10 ------------------------------------ Example #3 -- Latin Square Design ------------------------------------ The ANOVA Procedure Duncan's Multiple Range Test for REACTIME NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. Alpha 0.05 Error Degrees of Freedom 12 Error Mean Square 3.126667 Number of Means 2 3 4 5 Critical Range 2.437 2.550 2.619 2.665 Means with the same letter are not significantly different. Duncan Grouping Mean N BATCH A 7.200 5 4 A A 6.200 5 2 A A 5.800 5 3 A A 5.200 5 1 A A 5.000 5 5 Multiple Means Comparison (MMC) 11 ------------------------------------ Example #3 -- Latin Square Design ------------------------------------ The ANOVA Procedure Duncan's Multiple Range Test for REACTIME NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. Alpha 0.05 Error Degrees of Freedom 12 Error Mean Square 3.126667 Number of Means 2 3 4 5 Critical Range 2.437 2.550 2.619 2.665 Means with the same letter are not significantly different. Duncan Grouping Mean N DAY A 6.800 5 5 A A 6.600 5 1 A A 5.600 5 2 A A 5.400 5 3 A A 5.000 5 4 Multiple Means Comparison (MMC) 12 ------------------------------------ Example #3 -- Latin Square Design ------------------------------------ The ANOVA Procedure Duncan's Multiple Range Test for REACTIME NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. Alpha 0.05 Error Degrees of Freedom 12 Error Mean Square 3.126667 Number of Means 2 3 4 5 Critical Range 2.437 2.550 2.619 2.665 Means with the same letter are not significantly different. Duncan Grouping Mean N CATALYST A 8.800 5 C A A 8.400 5 A B 5.600 5 B B B 3.400 5 D B B 3.200 5 E Multiple Means Comparison (MMC) 13 ------------------------------------ Example #4 -- Factorial Design - a ------------------------------------ The GLM Procedure Class Level Information Class Levels Values PRESS 3 200 215 230 TEMP 3 HIGH LOW MEDIUM Number of observations 18 Multiple Means Comparison (MMC) 14 ------------------------------------ Example #4 -- Factorial Design - a ------------------------------------ The GLM Procedure Dependent Variable: YIELD Sum of Source DF Squares Mean Square F Value Pr > F Model 8 1.13777778 0.14222222 8.00 0.0026 Error 9 0.16000000 0.01777778 Corrected Total 17 1.29777778 R-Square Coeff Var Root MSE YIELD Mean 0.876712 0.147474 0.133333 90.41111 Source DF Type I SS Mean Square F Value Pr > F PRESS 2 0.76777778 0.38388889 21.59 0.0004 TEMP 2 0.30111111 0.15055556 8.47 0.0085 PRESS*TEMP 4 0.06888889 0.01722222 0.97 0.4700 Source DF Type III SS Mean Square F Value Pr > F PRESS 2 0.76777778 0.38388889 21.59 0.0004 TEMP 2 0.30111111 0.15055556 8.47 0.0085 PRESS*TEMP 4 0.06888889 0.01722222 0.97 0.4700 Multiple Means Comparison (MMC) 15 ------------------------------------ Example #4 -- Factorial Design - a ------------------------------------ The GLM Procedure Duncan's Multiple Range Test for YIELD NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. Alpha 0.05 Error Degrees of Freedom 9 Error Mean Square 0.017778 Number of Means 2 3 Critical Range .1741 .1818 Means with the same letter are not significantly different. Duncan Grouping Mean N PRESS A 90.68333 6 215 B 90.36667 6 200 C 90.18333 6 230 Multiple Means Comparison (MMC) 16 ------------------------------------ Example #4 -- Factorial Design - a ------------------------------------ The GLM Procedure Duncan's Multiple Range Test for YIELD NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. Alpha 0.05 Error Degrees of Freedom 9 Error Mean Square 0.017778 Number of Means 2 3 Critical Range .1741 .1818 Means with the same letter are not significantly different. Duncan Grouping Mean N TEMP A 90.56667 6 HIGH A B A 90.41667 6 LOW B B 90.25000 6 MEDIUM Multiple Means Comparison (MMC) 17 ------------------------------------ Example #4 -- Factorial Design - a ------------------------------------ The GLM Procedure Level of Level of ------------YIELD------------ PRESS TEMP N Mean Std Dev 200 HIGH 2 90.6000000 0.14142136 200 LOW 2 90.3000000 0.14142136 200 MEDIUM 2 90.2000000 0.14142136 215 HIGH 2 90.8500000 0.07071068 215 LOW 2 90.6500000 0.07071068 215 MEDIUM 2 90.5500000 0.07071068 230 HIGH 2 90.2500000 0.21213203 230 LOW 2 90.3000000 0.14142136 230 MEDIUM 2 90.0000000 0.14142136 Multiple Means Comparison (MMC) 18 ------------------------------------ Example #5 -- Factorial Design - b ------------------------------------ The GLM Procedure Class Level Information Class Levels Values DEPTH 4 0.15 0.18 0.2 0.25 FEED 3 0.2 0.25 0.3 FSYM 3 O P Q Number of observations 36 Multiple Means Comparison (MMC) 19 ------------------------------------ Example #5 -- Factorial Design - b ------------------------------------ The GLM Procedure Dependent Variable: FINISH Sum of Source DF Squares Mean Square F Value Pr > F Model 11 5842.666667 531.151515 18.49 <.0001 Error 24 689.333333 28.722222 Corrected Total 35 6532.000000 R-Square Coeff Var Root MSE FINISH Mean 0.894468 5.681249 5.359312 94.33333 Source DF Type I SS Mean Square F Value Pr > F DEPTH 3 2125.111111 708.370370 24.66 <.0001 FEED 2 3160.500000 1580.250000 55.02 <.0001 DEPTH*FEED 6 557.055556 92.842593 3.23 0.0180 Source DF Type III SS Mean Square F Value Pr > F DEPTH 3 2125.111111 708.370370 24.66 <.0001 FEED 2 3160.500000 1580.250000 55.02 <.0001 DEPTH*FEED 6 557.055556 92.842593 3.23 0.0180 Multiple Means Comparison (MMC) 20 ------------------------------------ Example #5 -- Factorial Design - b ------------------------------------ The GLM Procedure Duncan's Multiple Range Test for FINISH NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. Alpha 0.05 Error Degrees of Freedom 24 Error Mean Square 28.72222 Number of Means 2 3 4 Critical Range 5.214 5.477 5.645 Means with the same letter are not significantly different. Duncan Grouping Mean N DEPTH A 104.889 9 0.25 B 97.889 9 0.2 C 89.778 9 0.18 C C 84.778 9 0.15 Multiple Means Comparison (MMC) 21 ------------------------------------ Example #5 -- Factorial Design - b ------------------------------------ The GLM Procedure Duncan's Multiple Range Test for FINISH NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. Alpha 0.05 Error Degrees of Freedom 24 Error Mean Square 28.72222 Number of Means 2 3 Critical Range 4.516 4.743 Means with the same letter are not significantly different. Duncan Grouping Mean N FEED A 103.833 12 0.3 B 97.583 12 0.25 C 81.583 12 0.2 Multiple Means Comparison (MMC) 22 ------------------------------------ Example #5 -- Factorial Design - b ------------------------------------ The GLM Procedure Level of Level of ------------FINISH----------- DEPTH FEED N Mean Std Dev 0.15 0.2 3 66.000000 7.21110255 0.15 0.25 3 88.666667 3.05505046 0.15 0.3 3 99.666667 2.08166600 0.18 0.2 3 73.333333 5.50757055 0.18 0.25 3 96.666667 8.08290377 0.18 0.3 3 99.333333 4.50924975 0.2 0.2 3 87.333333 5.03322296 0.2 0.25 3 100.666667 6.65832812 0.2 0.3 3 105.666667 5.85946528 0.25 0.2 3 99.666667 4.04145188 0.25 0.25 3 104.333333 5.50757055 0.25 0.3 3 110.666667 3.51188458