K(h) ) ers (3'2)

where kK, is the relative permeability, ranging in value from 0.0 to 1.0, and K, is the saturated
hydraulic conductivity (L/T). The saturated hydraulic conductivity is a flow property of the
porous medium and fluid which is determined by tests performed under saturated conditions.
It represents a maximum possible value of effective hydraulic conductivity. The relative
permeability term describes the influence of water content on the magnitude of the effective
hydraulic conductivity. Values of relative permeability range from a minimum value reflecting
the reduction of effective conductivity at residual water content to a maximum of 1.0 reflecting
saturated conditions.

The change in relative permeability is caused by changes in moisture content, which result in
the preferential movement of water through certain pathways, due to the influence of capillary
forces. As the soil becomes less saturated, water drains more readily from large radius pore
structures and water flow becomes restricted to pore sequences of smaller radii (Figure 3.2) as
well as that held in layers close to the soil particles. The result of water becoming increasingly
restricted to the smaller radius pathways is a reduction in the spatially-averaged effective
hydraulic conductivity.

The decrease in effective hydraulic conductivity, as reflected in the relative permeability term,
is described by pairs of empirical soil-moisture curves. These curves detail the relationships
between water content and pressure head and between hydraulic conductivity and water
content. Soil-moisture curves are often described as coefficients and exponents of standard
analytical functions (Brooks and Corey, 1966; Mualem, 1976; van Genuchten, 1980). The
3DFEMWATER code allows the user to define the curves using the van Genuchten functions
(1980) or as sets of paired values of relative permeability versus moisture content and
moisture content versus pressure head given in lookup table format. The van Genuchten
relationships found in SBDFEMWATER are as follows:

K * 2Y2 [1 & &2 (}(]2 (3-3a)

r e

and
[1 % ("*h&h *)®*1 % for h<h_

2 " (3- 3b)
for hs$h,
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Figure 3.2 Variable pore spacing in soil under saturated flow conditions.

where
, - 282,
© N&2,
("1&1/$
and

= moisture content (dimensionless)
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1.0
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Note that the soil-moisture content is defined as the porosity times the degree of saturation.

- LEGEND
o
| O s
—©— SILTYLOAM
4% SANDY LOAM
1 LLLL11ll L1 L1111l 1 L_L L 1llll 1 LLLLI1Il 1 L_L L1l
1.0 10° 10 ° 10° 10
NEGATIVE PRESSURE HEAD (cm)
N = porosity (dimensionless)
2o = residual moisture content (dimensionless)
$ ( = soil-specific exponents (dimensionless)
' = soil-specific coefficient (1/L)
h, = air entry pressure head (L)
2, = effective moisture content (dimensionless)

Typical soil-moisture curves generated from Equations 3-3a and 3-3b are presented in Figures
3.3a and 3.3b.
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Figure 3.3. Logarithmic plot of constitutive relations for sand, clay, silty loam, and sandy
loam: (a) moisture content vs. pressure head and (b) relative permeability vs.
moisture content (based on data presented in Carsel and Parrish, 1988).

The water capacity term or storage term used in SDFEMWATER can be written in the form:
1.0

FCh)y— dz an (3 4)
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so that;

h " h,(x,, Y, Z,,t) on B, (3-5)
where
hy = specified pressure head (L)
By = portion of the system boundary subject to a Dirichlet
boundary condition
X0, Y5, Zp, = spatial coordinates on the boundary (L)

Dirichlet boundaries are typically used to define the perimeters of bodies of water, the water
table location, and leaking surface impoundments or other waste disposal facilities containing
specified levels of water. Specified pressure heads may be constant or allowed to vary with
time reflecting physical processes such as water level fluctuations associated with seasonal
changes in rainfall and evapotranspiration rates.

The specified-fl x(Ca u chy) boundary represents the portions of the system boundary where

infiltration or evapotranspiration rates can be quantified. The specified-flux boundary condition
can be written:

26



AGRICULTURAL

= 77 ]
777 ]
pdd pd // [/ /
..... —/ pd // /[ /
\ \\ \\\\\\ \\ \u\
- [ [ /] [ /]
c \L_ /[ /7] [ /]
_” \ VA VA \ \ \\ /
- X v’ 7 2
< < 7]
= =\ 77 7
o \ i 7 7 ]
L I \ / [ [ /
S > \ —7 \
3 =

27



Figure 3.4.  Conceptual model and mathematical approximation for variably-saturated flow
system. Within the modeled system, transient source/sink terms may be
applied as point sources/sinks or as distributed sources/sinks.
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&nik Ki(Lh % Lz) " q_(X,, Yy, Zp,t) on B, (3-6)

where
n = outward unit vector normal to the boundary
Lh = pressure head gradient
Lz = gravity gradient
d. = specified flux rate (L/T)
B, = portion of the system boundary subject to a specified-flux
boundary condition
k, = relative permeability
K, = saturated hydraulic conductivity (L/T)

The specified-flux condition is analogous to a Neun & rnboundary condition for saturated flow
problems differing only in the nonlinear nature of the effective hydraulic conductivity. The
specified boundary is simulated by assigning water flux rates along specified element sides.
Flux rate versus time profiles can be input to account for seasonal or other time-variant
changes in rainfall and evapotranspiration rates. The default boundary condition for
3DFEMWATER is a zero specified-flux boundary condition, q.=0.

Also available in SDFEMWATER is a specified-pressu re-he: d g B d ent(Neurn a rm) boundary
condition of the form:

&ntk KJLh * g (X, ¥, Z,, t) on B, (3-7)

where q, (L/T) is the portion of the boundary flux attributable to the pressure-head gradient and
B, is the portion of the system boundary subject to a specified-pressure-head gradient
boundary condition. For unsaturated flow problems, the presence of this option provides the
user an efficient way of evaluating systems with vertically extensive vadose zones. As long as
the area of interest in a study is above the capillary fringe, the specified-pressure-head
gradient boundary condition allows the user to truncate the system above the water table
without knowing fluxes or pressure heads a priori (Figure 3.5). By choosing the specified-
pressure-head gradient boundary condition option for element faces defining the bottom
boundary of the system, and setting the flux q, equal to zero, the bottom boundary becomes a
gravity drainage boundary. This is equivalent to the code allowing the user to specify a flux
along a horizontal bottom boundary of q.=k,K,. This assumption of zero vertical change in
pressure head near the bottom boundary is a reasonable assumption for slowly varying flow
conditions and represents the outflow boundary condition that is usually assumed for field
drainage experiments. This boundary condition is not appropriate for use in modeling the
saturated zone.
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The va i bk cor pos #e boundary condition represents a combined Dirichlet/ specified-flux
boundary. It allows for time-variant infiltration/ evapotranspiration rates with limits set on the
maximum and minimum pressure heads which the boundary nodes may attain. The variable
boundary conditions during periods of precipitation are:

30



ARID

S G

|

Ground
Surface

YYYVYYVYYYVYYYYV VY

qC:k I’K S

Water Table «

Figure 3.5. Use of a pressure-head gradient boundary condition to simulate a portion of the
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unsaturated zone.
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h * hp(xb,yb, z,,t) on B, (3-8a)

or
&nik K(Lh % Lz) " q (X, Y, 2, t) on B, ( 3- 8b)

and during periods of nonprecipitation are:

h * hp(xb, Yy Z 1) on B, (3-8c)
or
h " h(x,Y, z,t) onB, (3-8d)
or
&nik K g(Lh % Lz) " g.(X,, Y, 2, t) on B, (3-8e)
where
h, = maximum pressure head (L)
ad, = maximum infiltration rate (L/T)
h,, = minimum pressure head (L)
Je = maximum evapotranspiration rate (L/T)
B, = portion of the system boundary subject to a variable

boundary condition

P hysically, the maximum pressure head limit on the boundary prevents the generation of
inappropriate surface water mounding. The minimum pressure headrestraint keeps the
evaporation process from drying the soil near the boundary to moisture levels lower than
residual saturation levels. The variable boundary condition can be used to approximate
seepage faces within the studied area.

hem lsou rce/s i N s, as represented by the term ¢ (L*/T/L®) in Equation 3-1 are also
accounted for in SBDFEMWATER. As with the boundary conditions, the source/sink terms can
be constant or allowed to vary with time. Two source/sink options are available in the code.
The first is a distributed source/sink option and the second is a point source/sink option.

The distributed source option is a source intensity that is integrated over the volume of an

element. The user prescribes a source intensity, g, (L*/T/L?), or flux rate per unit volume for
each distributed source element. This option allows a user modeling a large area to
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approximate the influence of several wells within an element.
The point source/sink option is generally used to represent production or injection wells. Wells

are represented as volumetric water fluxes, g, (L*/T), applied at a nodal point or to better
represent a screening interval, a column of nodal points (Figure 3.6). If vertically
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Figure 3.6. Using a series of nodes to represent a screened well interval.
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adjacent nodes are used to represent the screened interval of a well, the volumetric flux must
be distributed among the nodes. The most appropriate distribution of the total flux is in
proportion to the effective conductances, C,, of the individual nodes where the effective
conductance of each node is defined as:

Ce " 0. 5[( Ks) n&an&l % ( Ks) nLn] (3' 9)

where n-1 and n are indices referring to the element below the node and the element above
the node respectively and 0.5L is half the thickness of an element.

Ti e-vi ik ntboundary conditions and source/sink flux or flux intensity rates are defined by a
series of paired time and value points. This paired data is used to assemble a look-up table
from which appropriate values are obtained using linear interpolation at specified times of
analysis. Constant values can be specified by assigning the same value to a set of two
time/data point pairs, making sure that the simulation time is fully spanned.

3.1.3 Initial Conditions

The solution of Richard's equation also requires the initialization of pressure head values such
that:

h *h(x,y,z,t"0) inR (3-10)

where h; is the initial pressure head distribution (L), and R is the region of interest (Figure 3.7).
Besides providing a frame of reference for transient analyses, the initial conditions are used to
set the nonlinear parameters at the beginning of a simulation. For transient problems, an
appropriate set of initial pressure head values may either be input directly or derived from a
steady-state simulation. For more information on thessTo see Section 4.1.11.

INITIAL CONDITION PIECEWISE

TIME
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Figure 3.7. Pressure head versus time at a nodal point on the finite element grid.
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3.1.4 Steady-State

When analyzing the influence of transient stresses, such as well production schemes and
drought conditions, on the flow system, a starting point must be assumed. The user defines
boundary conditions and flow parameters as best he/she can, then does an initial simulation to
allow the system to reach an equilibrium or steady-state (Figure 3.8). The steady-state
simulation then defines the pressure head at all points in the system and it is from this initial
condition that a transient simulation is started. Although the actual system is never really in
steady-state, by using averaged conditions (i.e., rainfall, etc.) a reasonable starting pointis
generated. If the steady-state simulation fails to converge or the results poorly match field
data, flow parameters and/or boundary conditions should be adjusted to improve the starting
conditions. The steady-state or equilibrium condition is generated by removing the temporal
term from Equation 3-1. The system is then defined as the equilibrium reached under the
average conditions.

Besides being used for initial conditions for a transient simulation, the steady-state flow option
can also be used in conjunction with a transient transport simulation. Since the flow system
will generally reach equilibrium under non-changing stresses faster than an associated solute
transport problem, using a steady-state flow field and average conditions to define the
advective portion of solute transport will often give a good approximation of the change of
solute distribution over time. The savings in computational effort can be considerable and,
given the uncertainty of parameters in the system, an acceptable approximation may be
reached.
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Figure 3.8. Pressure head versus time at nodal point where steady-state solution is being
approached.
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3.2 NUMERICAL APPROXIMATION IN 3DFEMWATER

The 3SDFEMWATER model was developed to solve the variably-saturated flow equation
described in Section 3.1. In the model, Richard's equation (Equation 3-1) is approximated
using the Galerkin finite element technique. The time integral term in Equation 3-1 is
approximated using backwards or central (Crank-Nicholson) difference in time. The
nonlinearity of the system is treated using Picard iteration and the generated set of linearized
equations is solved using a block iterative method.

3.2.1 Galerkin Formulation

In SDFEMWATER, Richard's equation is approximated using the Galerkin finite element
method (Pinder and Gray, 1977) where the dependent variable, pressure head, is
approximated by a trial function of the form:

h " N(x,t)h(t) j *1,27§n (3-11)

where N(x;,t) are the three-dimensional shape functions and h(t) are nodal values of pressure
head at time t for the n nodes of which the finite element grid is prised (Figure 3.9).
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Figure 3.9. Finite element grid for production from a single well in a variably-saturated
porous medium.
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Substituting the trial functions into Equation 3-1 and applying the Galerkin criterion, a set of
weighted residual minimization equations are generated of the form:

m
R,

s

W|F(h) m—th&L@[ers@(LF\%Lz)]&q dR" 0 (3-12)

where W, are the weighting functions and R is the volume being simulated.

For the Galerkin method, the weighting functions are the same as the shape functions.
Substituting W, = N, and Equation 3-1 into Equation 3-12 results in:

I(Nh) .
(h) —L11= & Lfk KihLN %Lz} &q{dR "0, i "1,2,.

Nt (3-13)

i "2,

where n is the number of nodes. Integration by parts can be used to rid Equation 3-13 of all
second order derivatives, leaving a set of equations of the form:

I(Nh.)
(N ——J==dR% K K LN, LN %L2) R
R, R, (3-14)
& N nik Ki(h LN %Lz) dB& N qdR * 0
B R,

where B, is the region boundary. The integrals given in Equation 3-14, which are taken over
the entire region being modeled, can be replaced by the summation of integrals taken over the
individual elements of which the finite element grid (Figure 3.9) consists. This finite element
approximation generates a set of n nodal equations of the form:

dh,

I 9 - i "
A o %B,h " C, o120 (3-15a)

i "1,2,...n
where
m

- epn €

AT g R(MNTNGR (3-15Db)

e
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and

m
N~ ow e e e e
] &qung@LNi @deR%qu\li qdR%E?lq\li nik, K i h, LN %Lz) |di ( 3- 15d)

e e s

where m is the number of elements into which the system is discretized and N° denotes
elemental shape functions.

3.2.2 Solution Techniques

To solve the series of linearized ordinary differential equations presented in Equation 3-15a,
the time differential is replaced by a finite difference formulation, resulting in working equations
for SDFEMWATER of the form:

M (hlk%l & hjk> % V\Bikj%whjk%l % (1&W) Bikj%whjk - qk%w (3_ 16)

where k+1 represents the current time level, k the previous time level, )t the length of the
current time step and w the time weighting function (1.0=backwards in time; 0.5=Crank
Nicholson or centered in time). Note that the associated transport code, 3DLEWASTE, utilizes
a backwards-in-time scheme. Therefore, when using 3BDFEMWATER to generate a flow field
for a SDLEWASTE simulation, the backwards-in-time option should be used. This prevents the
possibility of a mismatch in the interpolation of time-variant boundary condition and source/sink
flux values.

For each time step, the solution method involves an outer and inner iterative scheme (Figure
3.10) where the outer iterations control convergence of the nonlinear terms in the equations
and the inner iterative scheme controls the block-iterative method of solving the linearized set
of equations. For each nonlinear iteration, the linearized set of equations is solved using
relative permeability and storage terms updated using pressure head values generated during
the previous nonlinear (outer) iteration. Relative permeability and storage terms for the first
iteration in a time step are based on pressure head values from the previous time step, or for
the first time step, from the initial conditions.

Because of the strong nonlinear nature of the soil moisture curves, the outer iterative scheme
may become unstable. To help circumvent this problem it is often helpful to damp the iterative
changes in the pressure head. One method of damping the iterative changes is through the
use of an under-relaxation factor. Implementation of the under-relaxation factor for the outer
iterations in 3DFEMWATER is as follows:

45



h™ = (1&u)h" % uh'™ (3-17)

where u is the outer under-relaxation factor and r is the iteration number. If damping is
needed, values below one should be used. Acceleration or over-relaxation (1.0<u<2.0) is
generally not recommended for the nonlinear iterations
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Figure 3.10.Solution scheme for unsaturated flow analysis.
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as it may make the solution become unstable. For transient simulations, reduction of the time-
step size can also help increase the stability of the solution scheme. Note that sometimes
steady-state problems will be difficult to solve. In this case, it is often worth trying a transient
solution approach, using expanding time steps to approach the steady-state solution.

For each nonlinear iteration, a set of linearized simultaneous equations is solved using a block
iterative scheme. The user defines a set of subregions (or blocks) by prescribing the nodes
contained in each subregion (Figure 3.11). The code then generates a series of connectivity
arrays indicating: 1) the nodes contained in each subregion, 2) for each node, all other nodes
found in elements it is part of, and 3) which of these adjacent nodes are located in the same
subregion. The nodal equations for each subregion are solved directly using a Gaussian
solver. For each nodal equation defined in Equation 3-15a, contributions from adjacent nodes
falling outside the subregion being solved for are generated by multiplying the matrix terms
with the appropriate nodal pressure heads. These pressure heads are generated during the
last direct solution for the subregion containing the adjacent nodes.

Subregions are generally defined as nodal planes (Figure 3.11) allowing the user to work with
a minimal half-bandwidth when the direct solveris invoked. The half-bandwidth is defined as
one plus the largest difference between the node number associated with the nodal equation
and the other nodes found in elements the node is part of and which are in the same block as
the node. As a general rule, subregions comprised of vertical or sub-vertical nodal slices
provide the smallest half-bandwidth and will perform well in the block iterative method,
although this may not always be the case. For some problems, horizontal slicing may be
advantageous. The block iterative logic contains a relaxation factor which can be used to
over-relax the solution and help accelerate the rate of convergence. Implementation of the
inner over-relaxation scheme is as follows:

h>* = (1 &0)h° % oh** (3-18)

where s denotes the inner iteration number and o is the over-relaxation factor. The optimal
value of the over-relaxation factor usually falls between 1.5 and 1.9. A good starting pointis o
=1.72.

3.3 3DLEWASTE

3DLEWASTE is designed to simulate the movement of dissolved species through a variably-
saturated porous medium. Typical applications for 3DLEWASTE include the examination of: 1)
leachate migration from landfills and surface impoundments, 2) the influence on water quality
of pesticide and fertilizer applications, and 3) the environmental impact of leaky containment
structures such as underground and above ground storage tanks (Figure 3.12). Velocity fields
needed to define the advective pathways of water bearing the chemicals are provided by
associated 3BDFEMWATER simulations.
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