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Appendix V
Runoff Block Evaporation, Infiltration and Routing

Evaporation
Evaporation is input for each month as parameter VAP (in subroutine RHYDRO) or as a

time series in the Temp Block and used in equations in subroutine WSHED as parameter EVAP
It is considered as a loss “off the top.”  That is, evaporation is subtracted from rainfall depths
and/or ponded water prior to calculating infiltration.  Thus, subsequent use of the symbol i for
“rainfall intensity” is really rainfall intensity less evaporation rate.  Although evaporation and
infiltration are summed to form one total loss (RLOSS in subroutine WSHED) for the
subcatchment runoff calculations, separate totals are maintained for the overall continuity check.

Infiltration
Introduction

For pervious areas SWMM users have the option of specifying one of two alternative
infiltration models:  the Horton model or the modified Green-Ampt model (Horton, 1940; Green
and Ampt, 1911).  Horton’s model is empirical and is perhaps the best known of the infiltration
equations.  Many hydrologists have a “feel” for the best values of its three parameters despite the
fact that little published information is available.  In its usual form it is applicable only to events
for which the rainfall intensity always exceeds the infiltration capacity, although the modified
form used in SWMM is intended to overcome this deficiency.

On the other hand the Green-Ampt equation is a physically based model which can give a
good description of the infiltration process.  The Mein-Larson (1973) formulation of it is
applicable also for the case of rainfall intensity being less than the infiltration capacity at the
beginning of the storm.  New data have been published to help users evaluate the parameter
values (e.g., Carlisle et al., 1981).  With results from these studies now being published, use of
the Green-Ampt model for estimating infiltration should increase.

Integrated Horton’s Equation
Cumulative Infiltration

SWMM and many other hydrologic analysis techniques have used Horton’s equation
(Horton, 1940) for prediction of infiltration capacity into the  soil as a function of time,

fp = f∞ + (fo - f∞) e-αt     (V-1)
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where

fp = infiltration capacity into soil, ft/sec,
f∞ = minimum or ultimate value of fp (at t = ∞), ft/sec,
fo = maximum or initial value of fp (at t = 0), ft/sec,
t = time from beginning of storm, sec, and
α = decay coefficient, sec-1.

See Figure V-1 for a sketch of equation V-1. Actual infiltration is:

f(t) = min [fp(t), i(t)]    (V-2)

where

f = actual infiltration into the soil, ft/sec, and
i = rainfall intensity, ft/sec.

Equation V-2 simply states that actual infiltration will be the lesser of actual rainfall and
infiltration capacity.

     Typical values for parameters fo and f∞ are often greater than typical rainfall intensities.
Thus, when equation V-1 is used such that fp is a function of time only, fp will decrease even if
rainfall intensities are very light, as sketched in Figure V-1.  This results in a reduction in
infiltration capacity regardless of the actual amount of entry of water into the soil.

To correct this problem, the integrated from of Horton’s equation V-1 may be used:

( ) ( )( )∫ −
α
−

+== α−∞
∞

p pt
0

to
ppp e1

ff
tfdtftF    (V-3)

where F = cumulative infiltration at time tp, ft.

This is shown schematically in Figure V-2 and assumes that actual infiltration has been equal to
fp.  In fact, this is seldom the case, as sketched in Figure V-1.  Thus, the true cumulative
infiltration will be:

( ) ( ) τ∫ τ= dftF t
0            (V-4)

where f is given by equation V-2.

Equations V-3 and V-4 may be used to define the time tp.  That is, actual cumulative
infiltration given by equation V-4 is equated to the area under the Horton curve, given by
equation V-3, and the resulting equation is solved for tp and serves as its definition.
Unfortunately, the equation:
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Figure V-1.  Horton infiltration curve and typical hyetograph.  For the case illustrated, runoff
would be intermittent.

Figure V-2.  Cumulative infiltration, F, is the integral of f, i.e., the area under the curve.
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cannot be solved explicitly for tp, and it must be done iteratively.  Note that:

tp ≤ t    (V-6)

which states that the time tp on the cumulative Horton curve will be less than or equal to actual
elapsed time.  This also implies that available infiltration capacity, fp(tp) in Figure V-2, will be
greater than or equal to that given by equation V-1.  Thus, fp will be a function of actual water
infiltrated and not just a function of time that ignores other effects.

Summary of Procedure
Use of the cumulative Horton function in SWMM may be summarized as follows.  Note

that average values over time intervals are used.
1. At each time step, the value of fp depends upon F, the actual infiltration up to that

time. This is known by maintaining the value of tp.  Then the average infiltration
capacity, fp, available over the next time step is:
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2. Equation V-2 is then used.
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where

f = average actual infiltration over the time step, ft/sec, and
i = average rainfall intensity over the time step, ft/sec.

3. Cumulative infiltration is then incremented.

( ) ( ) ( ) tftFFtFttF ∆+=∆+=∆+    (V-9)

where ∆F = f  ∆t = additional cumulative infiltration, ft (see Figure R-5).

4. A new value of tp is then found, 
1pt , from equation V-5.  If ∆F = pf  ∆t, 

1pt  is found

simply by 
1pt  = tp + ∆t.  However, it is necessary to solve equation V-5 iteratively

when the new 
1pt  will be less than tp + ∆t, as sketched in Figure V-2.  This is done

using the Newton-Raphson procedure:
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an initial guess is made for 
1pt , say

( ) 2ttnt pp1
∆+=  (V-12)

where n refers to the number of the iteration.  Then a correction is made to 
1pt using

FF and FF′,

( ) ( ) FFFFnt1nt
11 pp ′−=+  (V-13)

The convergence criterion is:

FF/FF′ < 0.001 ∆t  (V-14)

and is achieved quite rapidly.
5. If tp ≥ 16/α, the Horton curve is essentially flat and fp = f∞.  Beyond this point there is

no need to iterate since fp will be constant at f∞ and independent of F.

Regeneration of Infiltration Capacity
For continuous simulation, infiltration capacity will be regenerated (recovered) during

dry weather.  SWMM performs this function whenever there are dry time steps - no precipitation
or surface water - according to the hypothetical drying curve sketched in Figure V-3.

( ) ( )wd tt
oop effff −α−

∞−−=  (V-15)

where
αd = decay coefficient for the recovery curve, sec-1, and
tw = hypothetical projected time at which fp = f∞ on the recovery curve, sec.

In the absence of better knowledge of αd, it is taken to be a constant fraction or multiple of α:

αd = R α  (V-16)

where R = constant ratio, probably n 1.0 (implying a “longer” drying curve than wetting curve).
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Figure V-3.  Regeneration (recovery) of infiltration capacity during dry time steps.

New values of tp are then generated as indicated in Figure V-3.  Let

rpt = value of tp at beginning of recovery, sec,

fr = corresponding value of fp, ft/sec, and

1wT = .etc,ttT,tt wwwww 221
−=−

Thus, along the recovery curve, for example,

( ) ( ) 1wd
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T
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∞−−==  (V-17)
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Solving equation V-17 for the initial time difference, 
rwT ,
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Then
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r1 ww ∆+=  (V-19)

and f1 in Figure V-3 is found from equation V-17. Finally 
1pt  is found from equation V-1,
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The procedure may be summarized as follows:
1. Knowing 

rpt , find fr from equation V-1.

2. Solve for 
rwT from equation V-18.

3. Increment 
rwT  according to equation V-19.

4. Solve for f1 from equation V-17.
5. Solve for 

1pt from equation V-20.

All steps are combined in:

( )[ ]rpd
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p e1e1ln

1
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α−∆α− −−
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−=  (V-21)

On succeeding time steps, 
1pt  may be substituted for 

rpt  and 
2pt  may be substituted for 

1pt , etc.

Note that fp has reached its maximum value of fo when tp = 0.

Program Variables
The infiltration computations are performed in subroutine WSHED in the Runoff Module

of SWMM.  Correspondence of program variables to those of this subsection is as follows:

∆t = DELT
1pt = TP1

fo = WLMAX FF = FF
f∞ = WLMIN FF′ = DFF
α = DECAY f = RLOSS (RLOSS is also the sum of
R = REGEN infiltration plus evaporation)
tp = TP i  = RI

F = CUMINF = CUMI pf = RLOSS1
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Green-Ampt Equation
Infiltration During Rainfall Events

The Green-Ampt equation (Green and Ampt, 1911) has received considerable attention in
recent years.  The original equation was for infiltration with excess water at the surface at all
times.  Mein and Larson (1973) showed how it could be adapted to a steady rainfall input and
proposed a way in which the capillary suction parameter could be determined.  More recently
Chu (1978) has shown the applicability of the equation to the unsteady rainfall situation, using
data for a field catchment.

The Mein-Larson formulation is a two-stage model.  The first step predicts the volume of
water which will infiltrate before the surface becomes saturated.  From this point onward,
infiltration capacity is predicted by the Green-Ampt equation.  Thus:

For F < Fs:
1Ki

IMDS
F

s
s −

⋅=   for I > Ks

f = i and  (V-22)

No calculation of fs  for i ≤ Ks

For F ≥ Fs:

f = fp and 




 ⋅+=

F

IMDS
1Kf sp  (V-23)

where

f = infiltration rate, ft/sec,
fp = infiltration capacity, ft/sec,
i = rainfall intensity, ft/sec,
F = cumulative infiltration volume, this event, ft,
Fs = cumulative infiltration volume required to cause surface saturation, ft,
S = average capillary suction at the wetting front, ft water,
IMD = initial moisture deficit for this event, ft/ft, and
Ks = saturated hydraulic conductivity of soil, ft/sec.

Equation V-22 shows that the volume of rainfall required to saturate the surface depends
on the current value of the rainfall intensity.  Hence, at each time step for which i > Ks, the value
of fs is calculated and compared with the volume of rainfall already infiltrated for this event.
Only if F ≥ Fs does the surface saturate, and further calculations for this condition use equation
V-23.

When rainfall occurs at an intensity less than or equal to Ks, all rainfall infiltrates and is
used only to update the initial moisture deficit, IMD.  (The mechanism for this is discussed in the
next subsection with reference to equation V-31.)  The cumulative infiltration is not altered for
this case of low rainfall intensity (relative to the saturated hydraulic conductivity, Ks).
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Equation V-23 shows that the infiltration capacity after surface saturation depends on the
infiltrated volume, which in turn depends on the infiltration rates in previous time steps.  To
avoid numerical errors over long time steps, the integrated form of the Green-Ampt equation is
more suitable.  That is, fp is replaced by dF/dt and integrated to obtain:

Ks(t2 - t1) = F2 - C �  ln(F2 + C) - F1 + C � ln(F1 + C)
(V-24)

where

C = IMD � S, ft of water,
t = time, sec, and
1,2 = subscripts for start and end of time interval respectively.

Equation V-24 must be solved iteratively for F2, the cumulative infiltration at the end of the time
step.  A Newton-Raphson routine is used.

The infiltration volume during time step (t2 - t1) is thus (t2 - t1) � i if the surface does not
saturate and (F2 - F1) if saturation has previously occurred and a sufficient water supply is at the
surface.  If saturation occurs during the time interval, the infiltration volumes over each stage of
the process within the time steps are calculated and summed.  When rainfall ends (or falls below
infiltration capacity) any water ponded on the surface is allowed to infiltrate and added to the
cumulative infiltration volume.

Recovery of Infiltration Capacity (Redistribution)
Evaporation, subsurface drainage, and moisture redistribution between rainfall events

decrease the soil moisture content in the upper soil zone and increase the infiltration capacity of
the soil.  The processes involved are complex and depend on many factors.  In SWMM a simple
empirical routine is used as outlined below; commonly used units are given in the equations to
make the description easier to understand.

Infiltration is usually dominated by conditions in the uppermost layer of the soil.  The
thickness of this layer depends on the soil type; for a sandy soil it could be several inches, for a
heavy clay it would be less.  The equation used to determine the thickness of the layer is:

sK4L ⋅=  (V-25)

where:

L = thickness of layer, in., and
Ks = saturated hydraulic conductivity, in./hr.

Thus for a high Ks of 0.5 in,/hr (12.7 mm/hr) the thickness computed by equation V-25 is 2.83
inches (71.8 mm).  For a soil with a low hydraulic conductivity, say Ks = 0.1 in./hr (2.5 mm/hr),
the computed thickness is 1.26 inches (32.1 mm).

A depletion factor is applied to the soil moisture during all time steps for which there is
no infiltration from rainfall or depression storage.  This factor is indirectly related again to the
saturated hydraulic conductivity of the soil and is calculated by:
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DF = L/300  (V-26)

where

DF = depletion factor, hr-1, and
L = depth of upper zone, in.

Hence, for Ks = 0.5 in./hr (12.7 mm/hr), DF = 0.9 percent per hour; for Ks = 0.1 in./hr (2.5
mm/hr), DF = 0.4 percent per hour.  The depletion volume (DV) per time step is then:

DV = DF � FUmax � ∆t
(V-27)

where

FUmax = L � IMDmax = saturated moisture content of the upper zone, in.,
IDMmax = maximum initial moisture deficit, in./in., and
∆t = time step, hr.

The computations used are:

FU = FU – DV for FU ≥ 0   (V-28)

F = F - DV for F ≥ 0  (V-29)

where

FU = current moisture content of upper zone, in., and
F = cumulative infiltration volume for this event, in.

To use the Green-Ampt infiltration model in continuous SWMM, it is necessary to
choose a time interval after which further rainfall will be considered as an independent event.
This time is computed as:

T = 6/(100 � DF)  (V-30)

where T = time interval for independent event, hr.

For example, when Ks = 0.5 in./hr (12.7 mm/hr) the time between independent events as given in
the equation V-30 is 6.4 hr; when Ks = 0.1 in./hr (2.5 mm/hr) the time is 14.3 hr.  After time T
has elapsed the variable F is set to zero, ready for the next event.  The moisture remaining in the
upper zone of the soil is then redistributed (diminished) at each time step by equation V-28 in
order to update the current moisture deficit (IMD).  The deficit is allowed to increase up to its
maximum value (IMDmax, an input parameter) over prolonged dry periods.  The equation used is
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L

FUF
IMD max −

= for  IMD ≤ IMDmax  (V-31)

When light rainfall (i ≤ Ks) occurs during the redistribution period, the upper zone moisture
storage, FU, is increased by the infiltrated rainfall volume and IMD is again updated using
equation V-31.

Guidelines for estimating parameter values for the Green-Ampt model are given in
Section 4. As is also the case for the Horton equation, different soil types can be modeled for
different subcatchments.

Program Variables
The infiltration computations are performed in subroutines WSHED and GAMP in the

RUNOFF Block.  Correspondence of program variables to those of this subsection is as follows:

S = SUCT(J) L = UL(J)
IMDmax = SMDMAX (J) DF = DF(J)
Ks = HYDCON(J) i = RI
FUmax = FUMAX(J) t = time
FU = FU(J) ∆t = DELT
IMD = SMD(J) DV = DEP
F = F(J) Fs = FS

Subcatchment Runoff Calculations
Overland Flow

The RUNOFF Block forms the origin of flow generation within SWMM, and much of
the emphasis in data preparation and user effort is aimed at successful execution of this block. In
order to understand better the conversion of rainfall excess (rainfall and/or snowmelt less
infiltration and/or evaporation) into runoff (overland flow), this subsection briefly describes the
equations used for this purpose.  It is intended to supplement the material presented in the
original SWMM documentation (Metcalf and Eddy et al., 1971a).

As discussed in Section 4, subcatchments are subdivided into three subareas that simulate
impervious areas, with and without depression (detention) storage, and pervious area (with
depression storage).  These are areas A1, A3, and A2 respectively on Figure V-4 and are denoted
in subroutine WSHED by the subscript J, (J = 1, 2, 3, 4).  When snowmelt is included, a fourth
subarea is added to account for the presence or absence of snow cover (see Figure II-5 in
Appendix II), but that case will not be considered further here.  The depth of depression storage
is an input parameter (WSTORE) for the impervious and pervious areas of each catchment.  The
impervious area without depression storage is specified for all subcatchments by parameter
PCTZER (as a percent),

( )3A1A
100

PCTZER
3A +⋅=  (V-32)

Of course, any subcatchment may be assigned zero depression storage over its entirety through
the use of parameter WSTORE.
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Figure V-4.  Subcatchment schematization for overland flow calculations.  Flow from each
subarea is directly to an inlet or gutter/pipe.  Flow from one subarea is not routed over another
subarea.
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Overland flow is generated from each of the three subareas by approximating them as
non-linear reservoirs, as sketched in Figure V-5.   This is a spatially “lumped” configuration and
really assumes no special shape.  However, if the subcatchment width, W, is assumed to
represent a true prototype width of overland flow, then the reservoir will behave as a rectangular
catchment, as sketched in Figure V-4.  Otherwise, the width (and the slope and roughness) may
be considered calibration parameters and used to adjust predicted to measured hydrographs.

Figure V-5.  Non-linear reservoir model of subcatchment.

The non-linear reservoir is established by coupling the continuity equation with
Manning’s equation.  Continuity may be written for a subarea as

Q*iA
dt

dd
A

dt

dV −⋅==  (V-33)

where

V = A � d = volume of water on the subarea, ft3,
d = water depth, ft,
t = time, sec,
A = surface area of subarea, ft2,
i*         = rainfall excess = rainfall/snowmelt intensity minus evaporation/infiltration

rate, ft/sec, and
Q = outflow rate, cfs.
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The outflow is generated using Manning’s equation:

( ) 2/13/5
p Sdd

n

49.1
WQ −⋅=  (V-34)

where

W = subcatchment width, ft,
n = Manning’s roughness coefficient,
dp = depth of depression storage, ft, and
S = subcatchment slope, ft/ft.

Equations V-33 and V-34 may be combined into one non-linear differential equation that may be
solved for one unknown, the depth, d.  This produces the non-linear reservoir equation:

( )

( ) 3/5
p

2/13/5
p

ddWCON*i

Sdd
nA

W49.1
*i

dt
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−⋅+=

−
⋅
⋅−=

 (V-35)

where

nA

SW49.1
WCON

2/1

⋅
⋅⋅−=  (V-36)

Note the grouping of width, slope and roughness into only one parameter.

Equation V-35 is solved at each time step by means of a simple finite difference scheme.
For this purpose, the net inflow and outflow on the right hand side (RHS) of the equation must
be averaged over the time step.  The rainfall excess, i*, is given in the program as a time step
average.  The average outflow is approximated by computing it using the average between the
old and new depths.  That is, letting subscripts 1 and 2 denote the beginning and the end of a
time step, respectively, equation V-35 is approximated by:

( )
3/5

p121
12 ddd

2

1
dWCON*i

t

dd


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 −−+⋅+=

∆
−

 (A-37)

where ∆t = time step, sec.

Equation V-37 is then solved for d2 using a Newton-Raphson iteration; the Fortran coding is
located near the end of subroutine WSHED.

Given d2, the instantaneous outflow at the end of a time step, WFLOW is computed using
the equation V-34.  Parameter WFLOW is used in runoff quality calculations and is the flow
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value that is input to inlets and gutter/pipes.  The instantaneous outflow at a given time is also
the flow value transferred to subsequent SWMM modules.

Although the solution of equation V-37 is straightforward and simple (and in fact may be
performed on programmable hand calculators), some peculiarities exist in the way the
parameters for individual subareas (A1, A2, A3 in Figure V-4) are specified.  In particular, only
two values of WCON are computed (equation V-36), one for the pervious and one for the total
impervious subareas.  Thus, WCON is the same for calculating depths on subareas A1 and A3
and is computed from equation V-36 using the total impervious area, A1 plus A3, in the
denominator.  However, the instantaneous flow is computed using the individual area of each
subarea (e.g., Al or A3).  The net effect for subareas A1 and A3 is approximately to reduce the
subcatchment width by the ratio A1/(A1 + A3) or A3/(A1 + A3) as implied in Figure V-4.
Numerical tests of this scheme versus one that uses the individual areas (and proportional
widths) in parameter WCON indicate only about a half percent difference between the two
methods.  Hence, it should be satisfactory.

Prior to performing these calculations, a check is made to see if losses are greater than the
rainfall depth plus ponded water.  If so, the losses (evaporation plus infiltration) absorb all water
and outflow is zero.  Similarly, if losses alone would be sufficient to lower the depth below the
depression storage, the new depth is computed on this basis only and the outflow is zero.

The computational scheme (equations V-37 and V-38) has proven quite stable.  The only
instance for which non-convergence problems arise (or an attempt to compute a negative depth)
is when the subarea values are very small (e.g., a few square feet) coupled with a large time step
(e.g., ten minutes).  Should a non-convergence message be printed, the problem may usually be
cured by increasing the appropriate area or decreasing the time step.

Channels and Pipes
Flow routing in channel/pipes is also performed by coupling the continuity equation with

Manning’s equation to produce a non-linear reservoir.  The solution technique is performed in
subroutine GUTNR and is entirely analogous to that just described for overland flow; no details
will be given here.  However, a few comments are in order.  Three cross sectional shapes are
available for channel/pipes:  circular, trapezoidal, and parabolic.  Trapezoidal channels and
circular pipes are shown in Figure V-6 (parabolic channels are shown in Figure 4-9).  Parameters
representing depth (e.g., GDEPTH, D1, D0) are actual depths, in feet, for trapezoidal channels
but not for circular pipes.  Rather, for pipes the “depth” parameters are half of the angle sub-
tended by the wetted perimeter, in radians, as shown in Figure V-6.  Knowledge of this fact aids
in understanding the Fortran coding in subroutine GUTTER.

Since a channel/pipe acts as a reservoir with a water surface parallel to the invert, inflows
are automatically “distributed” along its length.  Hence, concentration of subcatchment inflows
only at the upstream end of a channel/pipe may be reasonable.  On the other hand, this leads to
considerable dispersion or flattening of a hydrograph peak when it is routed through a cascade of
channel/pipes.  Of course, for this flow routing scheme, downstream changes are not “felt”
upstream, and no backwater effects can be simulated.
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Figure V-6.  Depth parameters for trapezoidal channel and circular pipe.

Non-convergence messages may be encountered during channel/pipe routing if short
channel/pipes of small dimensions are included in the simulation.  Again, this can usually be
cured by increasing the dimensions (e.g., length and width/diameter) or decreasing the time step.
The iterative equation for the Newton-Raphson technique used to solve for the new depth in the
channel/pipe has been adjusted to eliminate most convergence problems.   This new iterative
equation plus the method used for variable time steps in Runoff will let the user have reasonably
sized pipes in his/her simulation even for long time steps.

Variable Time Step
Runoff has three time steps:  (1) a wet time step (WET), (2) the transitional time step(s)

between wet and dry (WETDRY), and (3) the dry (DRY) time step.  WET will normally be less
than or equal to the rainfall interval entered on data group D1.  It can be longer, but information
is lost by averaging the rainfall over a longer time period.  A wet time step is a time step with
precipitation occurring on any subcatchment.  A transitional time step has no precipitation input
on any subcatchment, but the subcatchment(s) still have water remaining in surface storage.  A
dry time step has no precipitation input or surface storage.  However, it can have groundwater
flow.  The model is considered either globally wet, globally transitional, or globally dry.

The time step should be smaller for periods of rapid change, i.e., during rainfall, and
longer during periods of slower change, i.e., during transitional and dry time steps.  Runoff by
using the concept of extrapolation to the limit can use any time step from 1 second to 1 year.
The solution technique is stable and convergent for any length time step.

Typically the WET time step should be a fraction of the rainfall interval.  Five minute
rainfall should have wet time steps of 1, 2.5 or 5.0 minutes, for example.  The rainfall intensity is
constant over the wet time step when WET is a fraction of the rainfall interval.  A smaller wet
time step would be desirable when the subcatchment is small and the time of concentration is a
fraction of the rainfall interval.  When using one-hour rainfall from the NWS, wet time steps of
10 minutes, 15 minutes, etc., can be used by the model.
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The Runoff overland flow routing technique loses water through infiltration, evaporation,
and surface water outflow during the transition periods.  A subcatchment’s surface storage and
surface flow always decrease during the transition from a wet condition to a dry condition.  A
smooth curve or straight line is a good model for the shape of the hydrograph.  Transport and
Extran usually have small time steps and use linear or parabolic interpolation for input
hydrographs with longer time steps.  The transition time step, WETDRY, can be substantially
longer than WET and generate a good overland flow hydrograph.  For example, a WET of 5
minutes can be coupled with a WETDRY of 15 minutes or 30 minutes.  When using hourly
rainfall input, a WET of 15 minutes can be coupled to a WETDRY of 2 hours or 3 hours.

The dry time step should be one day to a week.  The dry time step is used to update the
infiltration parameters, generate groundwater flow, and produce a time step value for the
interface file.  The dry time step should be day(s) in wet climates and days or week(s) in very dry
climates.  The synoptic analysis performed by the Rain Block will be of use in selecting the
appropriate dry time step.  Examine the average storm interevent duration in the storm summary
table.  The average storm interevent duration ranges from half a week to months depending on
station location.

The model can achieve substantial time savings with judicious usage of WET, DRY, and
WETDRY for both short and long simulations.  As an example consider the time step saving
using a WET of 15 minutes, a WETDRY of 2 hours, and a DRY of 1 day versus using a single
time step of 1 hour for a year.  Using Florida rainfall as input (average annual rainfall between
50 and 60 inches) gives 300 wet hours per year, flow for approximately 60 days per year, and
205 dry days per year.  This translates to 1975 time steps.  A constant hourly time step for one
year requires 8760 time steps.  This is greater than a 400 percent savings in time with a better
representation of the flow hydrograph due to the 15 minute wet time step.

Extrapolation Technique
The accuracy of the solution technique using variable time steps is enhanced (aided) by a

numerical technique called Richardson extrapolation (Press et al., 1986).  Richardson
extrapolation is also called Richardson’s deferred approach to the limit.  The extrapolated value
is the solution that would be obtained if an infinitely small time step was used in watershed,
channel/pipe or infiltration routing.

The concept of extrapolation to the limit may be more familiar to the reader in connection
with Romberg integration.  Romberg integration repeatedly calls a trapezoidal rule integration
subroutine in the sequence 1, 2, 4, 8, 16 panels etc. to extrapolate a more accurate solution than
that obtained by the trapezoidal rule alone.

The Runoff Block uses the same concept to extrapolate the watershed depth at the end of
a time step.  The subroutine WSHED uses the iterative techniques described earlier in this
appendix to solve for the infiltration volume and watershed depth at the end of a time step.  The
WET, DRY, and WETDRY time steps are broken up into smaller and smaller steps using the
relationships:  WET/n, DRY/n, and WETDRY/n where n is the number of subintervals used by
WSHED.  The sequence of subintervals n used by WSHED is

n = 1,2,4,6,8,12,24,32,48,64

Experience has shown that time steps smaller than 5 minutes do not have to be broken
into subintervals.  The integrated depth or infiltration volume for one subinterval is almost equal
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to the extrapolated depth or infiltration volume obtained from using more subintervals.  For time
steps longer than 5 minutes the extrapolated answer obtained from using one and two
subintervals usually has a small estimated error.  The exceptions are due to large rainfall
intensities over long time periods (i.e., 15 minute to 1 hour rainfall).  It may be necessary for the
time step to be broken up into more than 32 subintervals during these conditions.

The extrapolation to an infinitely small time step is illustrated in Figure V-7.  A rational
function, which is a analytical function dependent on the step size h, is fit to the various
estimates of the integrated watershed depth or infiltration volume.  The rational function (a
function with polynomial numerator and denominator) is then evaluated at h = 0.  The evaluated
depth or volume is the extrapolated value.

The Runoff Block treats overland flow, infiltration, and groundwater flow as coupled
processes.  The extrapolated value is actually a vector of estimates.  This is in contrast to
SWMM 3 where the infiltration and overland flow were not coupled.

Figure V-7.  Richardson extrapolation as used in the Runoff Block.  A large interval is spanned
by different sequences of finer and finer substeps.  Their results are extrapolated to an answer
that corresponds to an infinitely small time step.  Runoff uses a Newton-Raphson iteration
solution for the y values at each time step, and a rational function extrapolation to calculate the
extrapolated y value.  (This graph is adapted from Press et al., 1986.)
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Appendix VI
Transport Block Scour and Deposition

Introduction
Deposition of solid material during dry-weather flow  (DWF) in combined sewers and

subsequent scour during wet-weather flow has long been assumed to form a significant
contribution of solids to combined sewer overflows.  The deposition-scour phenomenon is also
evident in the “first flush” – high solids concentrations at the beginning of a storm event – found
in many sewer systems.  Even storm sewer systems may show a first flush if there is a base flow
due to infiltration or illegal connections.

Deposition and scour processes were included in the original SWMM Transport Block as
described in the documentation (Metcalf and Eddy et al., 1971a).  It simulated solids buildup
during DWDAYS dry days prior to the storm and scour during the storm, as velocities increased.
A constant horizontal approximation to the dimensionless shear stress on Shield’s curve
(described subsequently) was used to determine incipient motion, and one fixed particle size
distribution (for suspended solids only) and specific gravity of 2.7 were used to characterize the
solids.

Several problems existed in the routine, perhaps unknown to most SWMM users.  The
deposition-scour was dependent on the time step.  Buildup of solids would occur using a 1-hr
time step for the dry days prior to simulation, but scour would occur using, say, a 10-min
simulation time step with the same flow conditions.  The particle size distribution was unaffected
by the amount scoured from the bottom or deposited from the flow.  Thus, there was no
simulation of large particles being deposited in upstream conduits (and thereby unavailable for
deposition further downstream).  It was not possible to calibrate the routine or even “turn it off”
since all constants were incorporated into the program and were not input parameters.  Finally,
there were situations in which conservation of solids mass was violated.  Although the revised
routine still represents a gross approximation to the real sediment transport processes at work in
sewer systems, it is at least consistent within itself, it conserves mass, and is both calibratable
and avoidable.

There have been other recent investigations of solids deposition in sewers, most notably
the work of Sonnen (1977) and Pisano et al. (1979).  Sonnen’s work is highly relevant to the
modeling aspect since he developed a deposition-scour routine to accompany the Extran Block
of SWMM.  This model simulated both bed load and suspended load sediment transport and
characterized the sediment by up to ten particle size-specific gravity ranges.  Although his
routines worked satisfactorily, they are not compatible with the “old” Transport Block, and the
“new” Extran Block no longer routes quality parameters.  In addition, they are perhaps overly
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sophisticated for the present needs.  Thus, the current programming utilizes an approximate
method that is not as sound as Sonnen’s but does have the attributes described earlier.

The best characterization of solids in real sewer systems is given by Pisano et al. (1979)
in their description of extensive field and analytical work done in the Boston area.  The many
problems inherent in dealing with real systems are amply demonstrated.

Methodology and Assumptions
Overview

Since the criterion for deposition and scour depends upon the sediment characteristics
(notably size and specific gravity), one option for simulation of the range of characteristics found
in real sewer sediment is to carry along a group of different sizes and specific gravities and route
each range individually.  This is done in the Storage/Treatment Block of SWMM and was done
by Sonnen (1977).  This has the disadvantage of requiring large array sizes since each range
must be simulated for each conduit and preferably for each pollutant.

As an alternative, the present methodology utilizes a fixed particle size distribution and
specific gravity (input by the user) for each desired pollutant and maintains a time history for
each conduit of the maximum particle diameter (DS) in suspension (really, in motion – via bed
or suspended load) and the minimum particle diameter (DB) in the bed.  Thus, the particle size
distribution of particles in motion is the input distribution truncated on the right at DS, and the
particle size distribution of deposited solids is the input distribution truncated on the left at DB.
Mass-weighted values of DS are routed downstream for entry to subsequent conduits.

Assumptions
Several assumptions are inherent in the following development, including the following:
1. Solids in sewer systems are assumed to behave like ideal non-cohesive sediment

described in various texts (e.g., Graf, 1971; Vanoni, 1975).  Unfortunately, the work
of Pisano et al. (1979) shows little evidence of this, and, in fact, it may be an
impossible task to provide an accurate theoretical description of transport of the
highly heterogeneous material constituting “solids” in real sewer systems.  The only
hope is that the theory will appear to behave in a “reasonable” manner.

2. No distinction is made between particle size distributions resulting from different
pollutant sources, e.g., dry-weather flow and storms water.  Only one distribution
(and one average specific gravity) is used for each pollutant.

3. Shields’ criterion is used to determine the dividing particle size between motion and
no motion.

4. Once in motion, no distinction is made between bed and suspended load.  Particles in
motion (“suspension”) are routed downstream in each conduit by complete mixing,
the same as other quality parameters.

5. When a critical diameter (CRITD) is determined for scour, all particles with diameter
less than or equal to CRITD are eroded.  There is no effect simulated of armoring or
of erosion of layers of the bed.

6. Scour-deposition is considered only in conduits.  It is not simulated in non-conduits,
including storage elements.
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7. The effect of deposited sediment on the bed geometry is not considered.  When the
hydraulic radius (an important parameter) is calculated to determine the critical
diameter for motion, the bed is assumed to have the geometry of the conduit.  This
leads to some underestimation of deposited material, mainly at low flows.

Shields’ Criterion
Shields’ diagram for the definition of incipient motion is shown in Figure VI-1.  It is

widely accepted as a good definition of the beginning of particle motion and describes the
balance between the hydrodynamic forces of drag and lift on a particle (tending to induce
motion) and the submerged weight of a particle (tending to resist motion).  When hydrodynamic
forces acting on a sediment particle reach a value such that if increased even slightly will put the
particle into motion, critical or threshold conditions are said to have been reached.  Dimensional
analysis of this condition leads to

( ) 






ν
=

γ−γ
τ du

f
d

*

s

c  (VI-1)

where

τc = critical shear stress required to induce particle motion, lb/ft2

γs = specific weight of the sediment, lb/ft3,
γ = specific weight of water = 62.4 lb/ft3,
d = sediment diameter, ft (a conversion is made from mm),
u* = shear or friction velocity, ft/sec, and
ν = kinematic viscosity of water, ft2/sec.

The equation may be stated in words that the dimensionless critical shear stress is a function of
the shear Reynolds number.  The critical shear stress and shear velocity are related to each other
and to flow properties by

SRgu c* =ρτ=  (VI-2)

where

ρ = water density = 1.98 slug/ft3,
g = gravity = 32.2 ft/sec2,
R = hydraulic radius, ft, and
S = slope of energy grade line (assumed equal to invert slope).

In addition, the specific weight difference may be related to the specific gravity difference
between sediment and water,

γs - γ = γ(SPG – 1)  (VI-3)

where SPG = specific gravity of the sediment, and the specific gravity of water is taken as 1.0.
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Figure VI-1.  Shield’s diagram for definition of incipient motion (after Graf, 1971, p. 96).
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Experiments on critical shear stress (e.g., see Graf, 1971, and Vanoni, 1975) reveal the
motion of sediment grains to be highly unsteady and non-uniformly distributed.  Near critical
conditions, observations of a large area of the sediment bed will show that the incidence of
sediment motion occurs as gusts and is random in both time and space.  Shields and others
observed the process of initiation of motion to be stochastic in nature, so that there is no true
“critical condition” at which motion suddenly begins.  In fact, data on critical shear stress are
based upon arbitrary definitions of critical conditions by several investigators.  Shields himself
determined τc as the value for zero sediment discharge obtained by extrapolation on a graph of
observed sediment discharge versus shear stress.

Although experiments have been performed incorporating various materials (e.g., sand,
glass beads, steel shot, minerals), size ranges and specific gravities, the Shields criterion is
generally not used for cohesive sediment that may be more characteristic of sewer systems.
Nonetheless, it appears to be the only well document criterion for initiation of motion and is
utilized in spite of its limitations.

In SWMM, the Shields diagram is used to determine the dividing sediment diameter
between motion and no motion.  Thus, it is necessary to solve the functional relationship for the
critical diameter, d = CRITD.  For programming purposes, the diagram is approximated as
shown in Figure VI-2, where two straight line segments bound a central polynomial
approximation, all on a log-log plot.  Letting the dimensionless shear stress ≡ Y, and the shear
Reynolds number ≡ R*, then the functional forms and their best-fit parameters are as follows:

R∗ ≤ 1.47

b
*RaY ⋅=  (VI-4)

with

a = 0.1166, and
b = -0.977842 ≅ -1

1.47 ≤ R* ≤ 10

y = a0 + a1�x + a2�x2 + a3�x3

(VI-5)

where

y = ( )dlog
s

c
10 γ−γ

τ

x = log10 R*

and with

a0 = -0.9078950
a1 = -1.2326090
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Figure VI-2.  Linear and parabolic approximation of Shields’ diagram.
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a2 = 0.7298640
a3 = -0.0772426

10 W R* W 400

b
*RaY ⋅=  (VI-6)

with

a = 0.0227, and
b = 0.1568

R* D 400

( ) 06.01SPG
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⋅=
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 (VI-7)

The straight line segments may be solved directly for the critical diameter from
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and using the relationships of equations VI-2 and VI-3, resulting in
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Equation VI-9 works well for the coefficients a and b of equation VI-6.  But for equation VI-4,
b ≅ -1 and the exponent approaches infinity.  For the region R* ≤ 1.47, all sediment particles are
within the laminar sublayer of the flow, and motion is independent of the diameter (Graf, 1971).
For practical purposes, there is no apparent motion, and the critical diameter is assumed to be the
value at R* = 1.47 in the model, that is,

RSg

47.1
d

ν⋅=  .

The polynomial for the transition region, 1.47 ≤ R* ≤ 10, is rapidly solved using a
Newton-Raphson iteration.  In the program, equation VI-9 is first solved using the a and b values
for equation VI-6 (10 ≤ R* ≤ 400).  If the resulting value of R* is greater than 400, the critical
diameter is evaluated from equation VI-7.  If R* is less than 10, the polynomial approximation is
then solved.  If the resulting value of R* from polynomial is greater than 10, the critical diameter
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is assumed to be the value of R* = 10, and if R* is less than 1.47, the value at R* = 1.47 is used as
a default.

Regarding the parameters of equation VI-9, the slope, S, is taken as the invert slope
(SLOPE) for each conduit, used by the Transport Block.  The hydraulic radius is calculated at
each time step, and the kinematic viscosity (GNU), ν, is input for each run.  (It incorporates any
temperature effects.)  The specific gravity (SPG) of sewer particles ranges from 1.1 for organic
material to 2.7 for sand and grit.  An average value, based upon the rough composition of the
sediment, must be used.  When quality parameters are input in card group F1 of the Transport
Block, if SPG ≤ 1.0, the deposition-scour routine will not be used.  It may be seen that if SPG is
greater than 1.0 but very close to it, the value of CRITD in equation VI-9 becomes highly
sensitive to it.

Particle Size Distribution
The particle size distribution for each pollutant for which it is desired to simulate

deposition and scour is input by up to four straight line segments, as shown in Figure VI-3 (see
also Figure 6-6).  The distribution may be based upon characteristics of surface sediment for
simulation of storm sewers, but should utilize sewer conduit samples for combined sewers.

An example will best illustrate the use of the particle size distribution.  Consider first an
example of scour.  The distribution of Figure VI-3 is sketched again in Figure VI-4a.  At the
beginning of the time step, all particles in the bed are assumed to have diameters ≥ DB = 0.6 mm
in the example.  If a new critical diameter, CRITD, is calculated that is greater than DB (CRITD
= 1.5 mm in the example), the new bed distribution will become as shown in Figure VI-4b.  The
percent of the bed mass that is scoured is

%51100
72

3572 =×−

(Under the original methodology in the Transport Block, it would have been assumed that 100-
35 or 65 percent of the mass of the bed would be scoured.)

A similar calculation applies to deposition.  If the suspended material (particles in
motion) have the distribution shown in Figure VI-4c, it becomes that of Figure VI-4d.  The
percent of the suspended load that is deposited is

%33100
34100

3456 =×
−
−

(Under the original methodology in the Transport Block, it would have been assumed that 56
percent of the suspended load would be deposited.)  When scoured material is added to
suspended material, a new value of DS is computed by mass-weighting:

es

es1
2 MM

MCRITDMDS
DS

+
⋅+⋅

=            (VI-10)



434

Figure VI-3.  Particle size distribution for a pollutant.
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Figure VI-4.  Truncation of particle size distribution during scour and deposition.



436

where

DS2 = new value of DS, mm
DS1 = old value of DS, mm
Ms = original mass in suspension, mg, and
Me = mass eroded from bed, mg.

Similarly, if suspended material is deposited,

db

db1
2 MM

MCRITDMDB
DB

+
⋅+⋅

=            (VI-11)

where

DB2 = new value of DB, mm,
DB1 = old value of DB, mm,
Mb = original mass of bed material, mg, and
Md = mass deposited from flow, mg.

Due to this weighting, ordinarily it will not be true that DB = DS even though the same critical
diameter, CRITD, applies to both.

Another reason why DB will not necessarily equal DS results from the condition in which
CRITD < DB1 for scour (or CRITD > DS1 for deposition).  In these cases DB2 = DB1 (or DS2 =
DS1), prior to addition of mass from the flow (or bed), since no mass would be lost from the bed
(or from the suspended material).

Inflows and Junctions
To allow some difference between surface inflows to the sewer system and dry-weather

flow inflows (e.g., domestic sewage) a maximum particle size, PSDWF, may be specified (in
card group F1) for the pollutant found in DWF.  This also applies to pollutants entering as a base
flow in manholes.  Pollutants entering via infiltration are assumed to be completely dissolved
and have “zero particle sizes.”

At junctions (manholes or other non-conduits), a new value of DS is computed by mass
weighting the merging values.  For instance,
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=

=            (VI-12)

where

DSm = value of DS of mixture, mm

iuDS = DS value in upstream conduit i, mm,
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iuQ = outflow from upstream conduit i, cfs,

iuC = concentration in upstream conduit i, mg/l, and

subscripts DWF and inf refer to dry-weather flow and infiltration, respectively.
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Appendix IX

Integrated Form of Complete Mixing Quality Routing

Quality routing in the Transport and Runoff Blocks through conduit segments has long
been accomplished by assuming complete mixing within the conduit in the manner of a
continuously stirred tank reactor or “CSTR”.  The procedure is described in the original SWMM
documentation (Metcalf and Eddy et al., 1971a, Appendix B) and is very similar to the complete
mixing formulation of the Storage/Treatment Block.  See, for example, the discussion of
equations IV-9, IV-10 and IV-11 in Appendix IV.  For the finite difference scheme of equation
IV-11, however, it may easily be shown that negative concentrations may be predicted if:

Q

V2
t >∆  (IX-1)

where

∆t = time step, sec,
V = average volume in the conduit or storage unit, ft3, and
Q = average flow through the conduit or storage unit, cfs.

This rarely causes a problem for storage unit simulation due to their large volumes.  But when
long time steps (e.g., 1 hr) are used in Runoff or Transport, instabilities in the predicted
concentrations may arise.

These may readily be avoided with minimal loss of accuracy by using the integrated form
of the solution to the differential equation.  The procedure is described by Medina et al. (1981)
and is outlined below as applied to the Runoff and Transport Blocks.

The governing differential equation for a completely mixed volume is

LKCVQCCQ
dt

dV
C

dt

dc
V

dt

dVC
ii +−−=+=  (IX-2)

where

C = concentration in effluent and in the mixed volume, e.g., mg/l,
V = volume, ft3,
Qi = inflow rate, cfs,
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Ci
 = concentration of influent, e.g. mg/l,

Q = outflow rate, cfs,
K = first order decay coefficient, 1/sec, and
L = source (or sink) of pollutant to the mixed volume, mass/time, e.g.

cfs�mg/l

An analysis solution of this equation is seldom possible when Q, Qi, Ci, V and L vary arbitrarily
with time, as in the usual routing through conduits.  However, a simple solution is available to
the ordinary, first order differential equation with constant coefficients if parameters Q, Qi, Ci, V,
L and dV/dt are assumed to be constant over the solution time interval, t to t + ∆t.  In practice,
average values over the time interval are used at each time step.  Equation IX-2 is then readily
integrated over the time interval t to t + ∆t with

C(0) = C(t)  (IX-3)

to yield
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where

dtdV
V

1
KVQDENOM ++=  (IX-5)

Thus, the concentration at the end of the time step is predicted as the sum of a weighted inflow
concentration and a decaying concentration from the previous time step.

Equation IX-4 is used in both the Runoff and Transport Block and is completely stable
with respect to changes in ∆t.  It does not reflect rapid changes in volume and flow as well as the
finite difference solution (e.g., equation IV-11) but it is updated at each time step.  Given the
many other uncertainties of quality routing within the sewer system, it should be adequate.
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Appendix X

Subsurface Flow Routing in Runoff Block

Introduction
Because SWMM was originally developed to simulate combined sewer overflows in

urban catchments, the fate of infiltrated water was considered insignificant.  Since its
development, however, SWMM has been used on areas ranging from highly urban to relatively
undeveloped.  Many of the undeveloped and even some of the developed areas, especially in
areas like south Florida, are very flat with high water tables, and their primary drainage pathway
is through the surficial groundwater aquifer and the unsaturated zone above it, rather than by
overland flow.  In these areas a storm will cause a rise in the water table and subsequent slow
release of groundwater back to the receiving water (Capece et al., 1984).  For this case, the fate
of the infiltrated water is highly significant.  By assuming that the infiltration is lost from the
system, an important part of the high-water-table system is not being properly described
(Gagliardo, 1986).

It is known that groundwater discharge accounts for the time-delayed recession curve that
is prevalent in certain watersheds (Fetter, 1980).  This process has not, however, been
satisfactorily modeled by surface runoff methods alone.  By modifying infiltration parameters to
account for subsurface storage, attempts have been made to overcome the fact that SWMM
assumes infiltration is lost from the system (Downs et al., 1986).  Although the modeled and
measured peak flows matched well, the volumes did not match well, and the values of the
infiltration parameters were unrealistic.  Some research on the nature of the soil storage capacity
has been done in south Florida (SFWMD, 1984).  However, it was directed towards determining
an initial storage capacity for the start of a storm.  There remains no standard, widely-used
method for combining the groundwater discharge hydrograph with the surface runoff hydrograph
and determining when the water table will rise to the surface.  For instance, HSPF (Johansen et
al., 1980) performs extensive subsurface moisture accounting and works well during average
conditions.  However, the model never permits the soil to become saturated so that no more
infiltration is permitted, limiting its usefulness during times of surface saturation and flooding.
Another difficulty with HSPF occurs during drought conditions, since there is no threshold
saturated zone water storage (corresponding to the bottom of a stream channel) below which no
saturated zone outflow will occur.  These difficulties have limited HSPF usefulness for
application to extreme hydrologic conditions in Florida (Heaney et al., 1986).

In order to incorporate subsurface processes into the simulation of a watershed and
overcome previously mentioned shortcomings, SWMM has been equipped with a simple
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groundwater subroutine.  The remainder of this appendix will describe the theory, use, and some
limitations of the subroutine.

Theory
Introduction

An effort was made to utilize existing theoretical formulations for as many processes as
possible.  The purpose was to maintain semblance to the real world while enabling the user to
determine parameter values that have meaning to the soil scientist.  Also, in the following
discussion the term “flow” will refer to water that is passed on to another part of the system, and
the term “loss” will refer to water that is passed out of the system.  In addition, in the
groundwater subroutines, flows and losses have internal units of velocity (flow per unit area).

The groundwater subroutine, GROUND, simulates two zones – an upper (unsaturated)
zone and a lower (saturated) zone.  This configuration is similar to the work done by Dawdy and
O’Donnell (1965) for the USGS.  The flow from the unsaturated to the saturated zone is
controlled by a percolation equation for which parameters may either be estimated or calibrated,
depending on the availability of the necessary soil data.  Upper zone evapotranspiration is the
only loss from the unsaturated zone.  The only inflow to subroutine GROUND is the calculated
infiltration from subroutine WSHED.  Losses and outflow from the lower zone can be via deep
percolation, saturated zone evapotranspiration, and groundwater flow.  Groundwater flow is a
user-defined power function of water table stage and, if chosen, depth of water in the discharge
channel.

Continuity
The physical processes occurring within each zone are accounted for by individual mass

balances in order to determine end-of-time-step stage, groundwater flow, deep percolation, and
upper zone moisture.  Parameters are shown in Figure X-1 and defined below.  Mass balance in
the upper (unsaturated) zone is given by,
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In the lower (saturated) zone, for rising water tables,
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and for falling water tables,
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Figure X-1.  GROUND parameters and conceptualization.
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where

TH2 = end-of-time-step upper zone moisture content (fraction),
ENFIL = infiltration rate calculated in subroutine WSHED,
ETU = upper zone evapotranspiration rate,
PERC = percolation rate,
PAREA = pervious area divided by total area,
DELT = time step value,
D                     = beginning-of-time-step lower zone depth (elevation above a

datum),
D2 = end-of-time-step lower zone depth,
TH = beginning-of-time-step upper zone moisture content,
DWT1 = beginning-of-time-step upper zone depth,
DTOT = total depth of upper and lower zone = D1+DWT1,
ETD = lower zone evapotranspiration rate,
GWFLW = beginning-of-time-step groundwater flow rate,
A1 = groundwater flow coefficient,
BC = bottom of channel depth (elevation above datum),
B1 = groundwater flow exponent,
DEPPRC = beginning-of-time-step deep percolation rate,
DP                   = a recession coefficient derived from interevent declines in the

water table,
PR = porosity, and
TWFLW = channel water influence rate,
A3 = groundwater flow coefficient, and
TW = depth of water in channel (elevation above datum).

Moisture content (a fraction) is defined as the volume of moisture divided by the volume
of solids plus voids.  The maximum possible moisture content is the porosity; the minimum is
the wilting point (discussed below).  Solving equation X-1 for TH2 and using DWT1 = DTOT-
D1, yields a much simpler form which is not a function of the unknown D2,

( )[ ] TH1DWTDELTPERCPAREAETUENFIL2TH +⋅−⋅−=    (X-4)

Equation X-4 is solved first, followed by a Newton-Raphson solution of equation X-2 or X-3.
The sequencing will be described in more detail in a subsequent section, following a description
of the various simulated processes.
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Infiltration
Infiltration enters subroutine GROUND as the calculated infiltration from subroutine

WSHED.  As before in SWMM, either the Horton or Green-Ampt equation can be used to
describe infiltration.  For time steps where the water table has risen to the surface, the amount of
infiltration that cannot be accepted is subtracted from RLOSS (infiltration plus surface
evaporation) in subroutine WSHED.  In the event that the infiltrated water is greater than the
amount of storage available for that time step, the following equation is used to calculate the
amount of infiltration that is not able to be accepted by the soil.

PAREAAVLVOLDELTENVILXSINFL −⋅=    (X-5)

where

XSINFL = excess infiltration over pervious area, and
AVLVOL        = initial void volume in the upper zone plus total losses and outflows

from the system for the time step.

The second condition exists because of the algebra in equations X-2, X-3 and X-4.  As
the water table approaches the surface, the end-of-time-step moisture value, TH2, approaches the
value of porosity, which makes the denominator in equations X-2 and X-3 go towards zero.
Since a denominator close to zero could result in an unrealistic value of D2, a different way of
handling the calculations had to be implemented.  When the initial available volume in the upper
zone plus the volume of total outflows and losses from the system minus the infiltration volume
is between zero and an arbitrary value of 0.0001 ft, several assumptions are made.  First, end-of-
time-step groundwater flow and deep percolation, which are normally found by iteration, are
assumed to be equal to their respective beginning-of-time-step values.  This step is taken to
ensure that the final available volume remains in the previously mentioned range.  Second, TH2
is set equal to an arbitrary value of 90% of porosity.  It is believed that this will allow the TH2
value in this special case to be reasonably consistent with the TH² values juxtaposed to it in the
time series.  Third, D2 is set close to the total depth –  the actual value of D2 depends on the
value of porosity.  Fourth, the amount of infiltration that causes the final available volume to
exceed 0.0001 ft is calculated in the following equation and sent back to the surface in the form
of a reduction in the term RLOSS in subroutine WSHED.

( ) PAREAAVLVOL0001.DELTENFILXSINFL −+⋅=   (X-6)

Because of the way this special case is handled, it is possible for a falling water table to have the
calculated excess infiltration be greater than the actual amount of infiltration.  It is not desirable
for the ground to pump water back onto the surface!  Hence, the difference between the
calculated excess infiltration and the actual infiltration is added to the infiltration value of the
next time step.  The number of occurrences of this situation in a typical run is very small, as is
the computed difference that is passed to the next time step, so no problems should occur
because of this solution.
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Upper Zone Evapotranspiration
Evapotranspiration from the upper zone (ETU) represents soil moisture lost via cover

vegetation and by direct evaporation from the pervious area of the subcatchment.  No effort was
made to derive a complex formulation of this process.  The hierarchy of losses by
evapotranspiration is as follows:  1) surface evaporation, 2) upper zone evapotranspiration, and
3) lower zone transpiration.  Upper zone evapotranspiration is represented by the following
equations,

ETMAX = VAP(MONTH)   (X-7)

ETAVLB = ETMAX-EVAPO   (X-8)

ETU = CET*ETMAX   (X-9)

IF(TH.LT.WP.OR.ENFIL.GT.O.) ETU = 0.  (X-10)

IF(ETU.GT.ETAVLB) ETU = ETAVLB  (X-11)

where

ETMAX = maximum total evapotranspiration rate (input on card F1),
VAP(MONTH)           = input maximum evapotranspiration rate for month

MONTH,
ETAVLB = maximum upper zone evapotranspiration rate,
EVAPO = portion of ETMAX used by surface water evaporation,
CET                             = fraction of evapotranspiration apportioned to upper zone,

and
WP = wilting point of soil.

The two conditions that make ETU equal to zero in equation X-10 are believed to simulate the
processes actually occurring in the natural system.  The first condition (moisture content less
than wilting point) relates to the soil science interpretation of wilting point – the point at which
plants can no longer extract moisture from the soil.  The second condition (infiltration greater
than zero) assumes that vapor pressure will be high enough to prevent additional
evapotranspiration from the unsaturated zone.

Lower Zone Evapotranspiration
Lower zone evapotranspiration, ETD, represents evapotranspiration from the saturated

zone over the pervious area.  ETD is the last evapotranspiration removed, and is determined by
the following depth-dependent equation and conditions.

ETD = (DET-DWT1)*ETMAX*(1-CET)/DET  (X-12)

IF(ETD.GT.(ETAVLB-ETU)) ETD = ETAVLB-ETU  (X-13)

IF(ETD.LT.0.) ETD = 0.  (X-14)
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where

ETD = lower zone evapotranspiration rate, and
DET = depth over which evapotranspiration can occur.

Since ETD is typically very small compared to other terms and has to be checked for certain
conditions, it is assumed constant over the time step and not solved for in the iterative process.

Percolation
Percolation (PERC) represents the flow of water from the unsaturated zone to the

saturated zone, and is the only inflow for the saturated zone.  The percolation equation in the
subroutine was formulated from Darcy’s Law for unsaturated flow, in which the hydraulic
conductivity, K, is a function of the moisture content, TH.  For one-dimensional, vertical flow,
Darcy’s Law may be written

v = -K(TH) � dh/dz  (X-15)

where

v = velocity (specific discharge) in the direction of z,
z = vertical coordinate, positive upward,
K(TH) = hydraulic conductivity,
TH = moisture content, and
h = hydraulic potential.

The hydraulic potential is the sum of the elevation (gravity) and pressure heads,

h = z + PSI  (X-16)

where PSI = soil water tension (negative pressure head) in the unsaturated zone.

Equating vertical velocity to percolation, and differentiating the hydraulic potential, h,
yields

Percolation = -K(TH) � (1+ dPSI/dz)
(X-17)

A choice is customarily made between using the tension, PSI, or the moisture content, TH, as
parameters in equations for unsaturated zone water flow.  Since the quantity of water in the
unsaturated zone is identified by TH in previous equations, it is the choice here.  PSI can be
related to TH if the characteristics of the unsaturated soil are known.  Thus, for use in equation
X-17, the derivative is

dPSI/dz = dPSI/dTH � dTH/dz  (X-18)
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The slope of the PSI versus TH curve should be obtained from data for the particular soil under
consideration.  Relationships for a sand, sandy loam and silty loam are shown in Figures X-2,
X-3 and X-4 (Laliberte et al., 1966).  The data are based on laboratory tests of disturbed soil
samples and illustrate only the desaturation (draining) characteristics of the soil.  The
relationship during the saturation (wetting) phase will ordinarily be different; when both the
wetting and draining relationships are shown the curves usually illustrate a hysteresis effect.  The
figures also show the relationship between the hydraulic conductivity of the unsaturated soils and
the moisture content.  In some cases (e.g., sand), K(TH) may range through several orders of
magnitude.  Soils data of this type are becoming more readily available; for example, soil science
departments at universities often publish such information (e.g., Carlisle et al., 1981).  The data
illustrated in Figures X-2, X-3 and X-4 are also useful for extraction of parameters for the Green-
Ampt infiltration equations.

Equation X-17 may be approximated by finite differences as

Percolation = -K(TH) � [1+(∆TH/∆z)�(∆PSI/∆TH)]
(X-19)

For calculation of percolation, it is assumed that the gradient, ∆TH/∆z, is the difference between
moisture content TH in the upper zone and field capacity at the boundary with the lower zone,
divided by the average depth of the upper zone, DWT1/2.  Thus,

Percolation = -K(TH) � {1+[(TH-FD)�2/DWT1] � PCO}
(X-20)

where

FD = field capacity, and
PCO = ∆PSI/∆TH in the region between TH and FD.

PCO is obtained from data of the type of Figures X-2, X-3 and X-4.
Finally, the hydraulic conductivity as a function of moisture content is approximated

functionally in the moisture zone of interest as

K(TH) = HKTH = HKSAT � EXP[(TH-PR)�HCO]
(X-21)

where

HKTH = hydraulic conductivity as a function of moisture content,
HKSAT = saturated hydraulic conductivity, and
HCO = calibration parameter.

HCO can be estimated by fitting the HKTH versus TH curve to the hydraulic conductivity versus
moisture content curve, if such data are available (e.g., Figures X-2, X-3, X-4); three fits are
shown in Figure X-5.  The fits are not optimal over the entire data range because the fit is only
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performed for the high moisture content region between field capacity and porosity.  If soils data
are not available, HCÏ can be estimated by model calibration.
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Figure X-2.  Tension, PSI (squares, in. of
water) and hydraulic conductivity, K
(crosses, in./hr, K multiplied by 200) versus
moisture content.  Derived from data of
Laliberte et al. (1966), Tables B-5 and C-3.
Porosity = 0.503, temp. = 26.5° C, saturated
hyd. conductivity = 0.53 in./hr.

Figure X-3.  Tension, PSI (squares, in. of
water) and hydraulic conductivity, K
(crosses, in./hr, K multiplied by 100) versus
moisture content.  Derived from data of
Laliberte et al. (1966), Tables B-8 and C-5.
Porosity = 0.485, temp. = 25.1 °C, saturated
hyd. conductivity = 0.60 in./hr.

Figure X-4.  Tension, PSI (squares, in. of
water) and log-10 of hydraulic conductivity,
K (crosses, K in in./hr) versus moisture
content.  Derived from data of Laliberte et
al. (1966), Tables B-14 and C-11.  Porosity
= 0.452, temp. = 25.1°C, saturated hyd.
conductivity = 91.5 in./hr.
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Figure X-5.  Model representation and measured hydraulic conductivity curves for three types of soil.
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Combining equations X-20 and X-21 gives the resulting percolation equation for the
model,

PERC = HKTH � [1+PCO�(TH-FD)/(DWT1/2)] (X-22)

where PERC = percolation rate (positive downward) and is only nonzero when TH is greater
than FD.

If data sources for parameters PCO and HCO are lacking, they may be estimated through
the calibration process.  On the basis of preliminary runs, the groundwater subroutine is
relatively insensitive to changes in PCO and HCO, so a lack of extensive soils data should not
discourage one from using the model.

If moisture content is less than or equal to field capacity, percolation becomes zero.  This
limit is in accordance with the concept of field capacity as the drainable soil water that cannot be
removed by gravity alone (Hillel, 1982, p. 243).  Once TH drops below field capacity, it can only
be further reduced by upper zone evapotranspiration (to a lower bound of the wilting point).

The percolation rate calculated by equation X-22 will be reduced by the program if it is
high enough to drain the upper zone below field capacity or make the iterations for D2 converge
to an unallowable value.  Also, since checks must be made on PERC, it is assumed to be constant
over the time step and therefore not determined through an iterative process.

Field Capacity and Wilting Point
These parameters are used for demarcations for percolation and ET.  Field capacity, FC,

is usually considered to be the amount of water a well-drained soil holds after free water has
drained off, or the maximum amount it can hold against gravity (SCS, 1964; Linsley et al.,
1982).  This occurs at soil moisture tensions (see further discussion below) of from 0.1 to 0.7
atmospheres, depending on soil texture.  Moisture content at a tension of 1/3 atmosphere is often
used.  The wilting point (or permanent wilting point), WP, is the soil moisture content at which
plants can no longer obtain enough moisture to meet transpiration requirements; they wilt and die
unless water is added to the soil.  The moisture content at a tension of 15 atmospheres is
accepted as a good estimate of the wilting point (SCS, 1964; Linsley et al., 1982).  The general
relationship among soil moisture parameters is shown in Figure X-6 (SCS, 1964).

Data for FC and WP are available from the SCS, agricultural extension offices and
university soil science departments.  Generalized data are shown in Table X-1, as derived from
Linsley et al. (1982, p. 179).

Deep Percolation
Deep percolation represents a lumped sink term for unquantified losses from the saturated

zone.  The two primary losses are assumed to be percolation through the confining layer and
lateral outflow to somewhere other than the receiving water.  The arbitrarily chosen equation for
deep percolation is

DEPPRC = DP � D1/DTOT 
(X-23)
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Figure X-6.  Kinds of water in soil (SCS, 1964).  Note that silt loam contains more than twice as
much readily available water than sandy loam.
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Table X-1.  Volumetric Moisture Content at Field Capacity and Wilting Point (derived* from
Linsley et al., 1982, Table 6-1.)

Soil Type Field Capacity Wilting Point

Sand 0.08 0.03

Sandy loam 0.17 0.07

Loam 0.26 0.14

Silt Loam 0.28 0.17

Clay loam 0.31 0.19

Clay 0.36 0.26

Peat 0.56 0.30

*Fraction moisture content = fraction dry weight × dry density / density of water.

where

DEPPRC = beginning-of-time-step deep percolation rate, and
DP                   = a recession coefficient derived from interevent water table

recession curves.

The ratio of D1 to DTOT allows DEPPRC to be a function of the static pressure head above the
confining layer.  Although DEPPRC will be very small in most cases, it is included in the
iterative process so that an average over the time step can be used.  By doing this, large
continuity errors will be avoided should DEPPRC be set at a larger value.

Groundwater Discharge
Functional Form

Groundwater discharge represents lateral flow from the saturated zone to the receiving
water.  The flow equation takes on the following general form:

GWFLW = A1�(D1-BC)B1 - TWFLW + A3�D1�TW
(X-24)

and

TWFLW = A2�(TW-BC)B2  (X-25)

where

GWFLW         = beginning-of-time-step groundwater flow rate (per subcatchment
area,

TWFLW = channel water influence flow rate (per subcatchment area),
A1,A2 = groundwater and channel water influence flow coefficients,
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A3 = coefficient for cross-product,
B1,B2 = groundwater and tailwater influence flow exponents,
BC = elevation of bottom of channel, and
TW = elevation of water in channel.

If D1 is less than BC or TW, GWFLW is set equal to zero.  In addition, if TW = BC and B2 = 0,
then the indeterminant form of zero raised to the zero power in equation X-25 is set equal to 1.0
by the program.  The functional form of equations X-24 and X-25 was selected in order to be
able to approximate various horizontal flow conditions, as will be illustrated below.

Since groundwater flow can be a significant volume, an average flow each time step is
found by iteration using equation X-2 or X-3.  Groundwater flows can be routed to any
previously defined inlet, trapezoidal channel, or pipe, al-lowing the user to isolate the various
components of the total hydrograph, as shown in Figure X-7.  That is, the groundwater flow does
not have to be routed to the same destination as the overland flow from the subcatchment.

The effects of channel water on groundwater flow can be dealt with in two different
manners.  The first option entails setting TW (elevation of water surface in the channel) to a
constant value greater than or equal to BC (bottom-of-channel elevation) and A2, B2 and/or A3
to values greater than zero.  If this method is chosen, then the user is specifying an average
tailwater influence over the entire run to be used at each time step.

The second option makes the channel water elevation, TW, equal to the elevation of
water in an actual channel (trapezoidal channel or circular pipe).  For this option, the
groundwater must be routed to a trapezoidal channel or pipe – not an inlet.  The depth of water in
the channel (TW - BC) at each time step is then determined as the depth in the channel or pipe
from the previous time step.  (It is assumed that the bottom of the channel is at the elevation BC.)
The beginning-of-time-step depth must be used to avoid complex and time-consuming iterations
with the coupled channel discharge equations in subroutine GUTTER.  Unfortunately, because of
this compromise the groundwater flow may pulsate as D1 oscillates between just above and just
below elevation TW.  This pulsing may introduce errors in continuity and is, of course,
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Figure X-7.  Hydrograph of total flow and its two major components.
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unrepresentative of the actual system.  Shorter time steps and larger or less steep channels
(reducing the response of the channel) can be used to reduce the pulses.  Also, caution must be
taken when selecting A1, B1, A2, B2 and A3 so that GWFLW cannot be negative.  Although this
may occur in the actual system and represent recharge from the channel, there is currently no
means of representing this reverse flow and subtracting it from the channel.  One way of assuring
that this cannot happen is to make A1 greater than or equal to A2 and B1 greater than or equal to
B2, and A3 equal to zero.

Because of the general nature of the equation, it can take on a variety of functional forms.
For example, a linear reservoir can be selected by setting B1 equal to one and A2 and A3 equal
to zero.  Two drainage examples are illustrated below.

Example:  Infiltration and Drainage to Adjacent Channel
Under the assumption of uniform infiltration and horizontal flow by the Dupuit-

Forcheimer approximation, the relationship between water table elevation and infiltration for the
configuration shown in Figure X-8 is (Bouwer, 1978, p. 51)

( ) fLhhK 22
2

2
1 =−  (X-26)

where

f = infiltration rate,
K = hydraulic conductivity, and other parameters are as shown on Figure X-8.

Before matching coefficients of equations X-24 and X-25 to equation X-26, it should be
recognized that the water table elevation in SWMM, D1, represents an average over the
catchment, not the maximum at the “upstream” end that is needed for h1 in equation X-26.  Let
D1 be the average head,

( ) 2hh1D 21 +=  (X-27)

Figure X-8.  Definition sketch for Dupuit-Forcheimer approximation for drainage to adjacent
channel.
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Substituting h1 = 2 D1 - h2 into equation X-26 gives, after algebra

( ) fLK4h1D1D 2
2

2 =−  (X-28)

from which a comparison with equations X-24 and X-25 yields A1 = A3 = 4K/L2, A2 = 0, and
B1 = 2.  Note that GWFLW has units of flow per unit area, or length per time, which are the
units of infiltration, f, in equation X-28.

Example: Hooghoudt’s Equation for Tile Drainage
The geometry of a tile drainage installation is illustrated in Figure X-9.  Hooghoudt’s

relationship (Bouwer, 1978, p. 295) among the indicated parameters is

( ) 2
e LKm4mD2f +=  (X-29)

where De = effective depth of impermeable layer below drain center, and other parameters are
defined in Figure X-9.  De is less than or equal to bo in Figure X-9 and is a function of bo, drain
diameter, and drain spacing, L; the complicated relationship is given by Bear (1972, p. 412) and
graphed by Bouwer (1978, p. 296).  The maximum rise of the water table, M = h1 - bo.  Once
again approximating the average water table depth above the impermeable layer by D1 = 2h1 -
bo, equation X-29 can be manipulated to

( ) ( )[ ]
( )[ ] 2

oee
2

o

2
o1e

2
o1

LK16bD1DDb1D

LK4bhD2bhf

−+−=

=−+−=
 (X-30)

Figure X-9.  Definition sketch for Hooghoudt’s method for flow to circular drains.
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Comparing equation X-30 with equations X-24 and X-25 yields

A1 = 16K/L2,

B1 = 2

A2 = 16KDebo/L
2

B2 = 0

A3 = 16KDe/TW L2

and TW = BC = bo = constant during the simulation.  The equivalent depth, De, must be obtained
from the sources indicated above.  The mathematics of drainage to ditches or circular drains is
complex» several alternative formulations are described by van Schilfgaarde (1974).

Limitations
Since the moisture content of the unsaturated zone is taken as an average over the entire

zone, the shape of the moisture profile is totally obscured.  Therefore, infiltrated water cannot be
modeled as a diffusing slug moving down the unsaturated zone, as is the case in the real system.
Furthermore, water from the capillary fringe of the saturated zone cannot move upward by
diffusion or “suction” into the unsaturated zone.

The simplistic representation of subsurface storage by one unsaturated “tank” and one
saturated “tank” limits the ability of the user to match non-uniform soil columns.  Another
limitation is the assumption that the infiltrated water is spread uniformly over the entire
catchment area, not just over the pervious area.  In addition, just as for surface flow, groundwater
may not be routed from one subcatchment to another.  The tendency of the tailwater influence to
cause pulses if TW-BC is equated to the dynamic water depth in the adjacent channel is a
limitation that will remain until the channel flow and subsurface flow are solved simultaneously
using a set of coupled equations.  Such a solution would also permit reverse flow or recharge
from the channel to be simulated.

Finally, water quality is not simulated in any of the subsurface routines.  If water quality
is simulated in RUNOFF and the subsurface flow routines activated, any loads entering the soil
will “disappear,” as if the soil provides 100 percent treatment.

Subroutine Configuration
A flowchart of the subroutine configuration is presented in Figure X-10.  Initial values

and constants used in subroutine GROUND come mostly from subroutine GRIN, designed
specifically to read in these values.  Subroutine GRIN is called by RHYDRO.  Other necessary
values are transferred during the CALL statement and from previously calculated values stored
in COMMON.

Subroutine GROUND first initializes pertinent parameters, then calculates fluxes that are
constant over the time step.  Beginning-of-time-step fluxes are calculated next, and the value of
percolation is checked to ensure that it will not raise the water table above the ground surface.
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Figure X-10.  Flowchart of subsurface and directly connected surface calculations.
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 After other constants are calculated and TH² is determined from equation X-4, the
program branches to one of four areas.  The first and second areas are for rising and falling water
tables, equations X-2 and X-3, respectively.  In both cases, Newton-Raphson iteration is used to
solve simultaneously for the final groundwater flow, depth of lower zone, and deep percolation.
Each iteration checks whether or not groundwater flow is possible (D1 greater than or equal to
TW and BC).  After the iterations converge, final conditions are set as the next time step’s initial
conditions.

In the event of saturation (D1 = DTOT), the third area sets D2 equal to DTOT, sets final
ground-water flow equal to the maximum possible (D2 = DTOT),  and assumes DEPPRC
remains constant over the time step.  Any excess infiltration is then routed back to the surface for
overland flow calculations, and final conditions are set for the next initial conditions.  However,
if the maximum groundwater flow and DEPPRC rates permit some infiltration into the
subsurface zone, the initial and final groundwater flow are averaged to be used as the new initial
ground-water flow, and the program branches back to iterate for the solution.  This pathway will
rarely, if ever, be taken, but must be included to minimize possible continuity errors.

In the event the available storage in the unsaturated zone is less than 0.0001 ft, the fourth
area sets TH2 equal to 90% of porosity and D2 close to DTOT, and returns any infiltration to the
surface that causes the final unfilled upper zone volume to be greater than 0.0001 ft.  This is to
avoid oscillations as the water table hovers near the ground surface.  Again, final conditions are
then set as the next time step’s initial conditions.

Examples
Cypress Creek Calibration and Verification

Two examples will illustrate the use of the new subroutine.  The first example is a year-
long simulation of a 47 mi2 portion of the 117 mi2 Cypress Creek Watershed in Pasco County,
Florida, about 30 miles north of Tampa (Figure X-11).  The region has been studied in relation to
the interaction of surface water and ground water under the stress of heavy pumping and
drainage activities in the area (Heaney et al., 1986).  The watershed is characterized by sandy
soils in which most water movement follows subsurface pathways.  For this example, only a
single 47 mi2 area above State Road 52 (Figure X-11) and tributary to the USGS gage at San
Antonio has been simulated.

Twenty-four parameters on three additional H-cards are required for each subsurface
subcatchment.  (Many of these can be ignored or set to zero during most runs» not all parameters
are required for all runs.)  Input parameters are echoed on two new pages of output that
immediately follow the surface subcatchment information.  Figure X-12 is an example of these
two new pages; the values in Figure X-12 are from the calibration run on Cypress Creek.  In
addition to the new output just mentioned, a subsurface continuity check is provided in addition
to the existing surface continuity check.  An example of this amended page is shown in Figure
X-13.

The simulation is divided into two six-month runs:  the first six months for calibration,
and the second six months for verification.  Since Cypress Creek is a very flat, pervious area
with well-drained soils and very little surface flow, it was modeled in a manner that would allow
groundwater flow to account for most of the flow in the channel.  In other words, the
groundwater parameters represented by far the most critical part of the calibration.  The only
complete rainfall data for the calibration period are for the gage at St. Leo, out of the catchment
to the east.  Although these data are in daily increments, the calibration process was relatively
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Figure X-11.  Map of Cypress Creek watershed in Pasco County, Florida (Heaney et al., 1986).
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Figure X-12.  Subsurface input data for Cypress Creek calibration.
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Figure X-13.  Continuity check for surface and subsurface for Cypress Creek calibration.  The
relatively large surface continuity error does not actually exist; it comes from a double
accounting of the groundwater flow – a problem that has been fixed.
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simple because of the existence of both flow and shallow-well stage data.  In addition, only one
subcatchment (surface and subsurface) was used, since the purpose of this example was only to
illustrate the use of subroutine GROUND, not to provide a thorough simulation.

Figure X-14 shows the predicted groundwater flow hydrograph and the measured total
flow hydrograph for the calibration run, and Figure X-15 shows a comparison of the predicted
total flow hydrograph to the measured total flow hydrograph for the calibration run.  Predicted
and measured stages for the calibration can be seen in Figure X-16.  The calibration is not
especially remarkable in light of the lack of detailed rainfall data for the 47 mi2 area.  The
predicted stage hydrograph does not exhibit the short-term variations that are measured,
primarily because of the lack of spatial detail in the rain.  In addition, the measured stages are at
one well near the center of the modeled area and would be expected to show more variation than
would the average water table over the 47 mi2 simulated by SWMM.  The existence of more than
one gage in the 47 square miles of the catchment and shorter increment rainfall data would have
improved the fit seen in Figure X-16.  Figures X-17, X-18 and X-19 show similar results for the
verification runs.  In general, the average recession of the water table is simulated accurately, but
not the fluctuations.

Hypothetical Catchment with High Water Table
The second example is a 100 ac hypothetical subcatchment with the same soil properties

as Cypress Creek and a water table that is initially one foot from the surface.  The 10-yr SCS
Type II design storm for Tallahassee, Florida, is used for the rainfall input (Figure X-20).  This
storm is characterized by very high rainfall between hours 11 and 12.

In order to illustrate the influence of a high water table, runs were made with and without
the groundwater subroutine.   Table X-2 shows the disposition of the rainfall when a high water
table is simulated as opposed to when it is ignored.  Note that evaporation is about the same, and
the difference in the amount of infiltrated water shows up as a direct difference in surface runoff.
(The runs were halted before all water had run off.)  The two hydrographs and the corresponding
water table (for the run in which it is simulated) are shown in Figure X-21.  A larger difference
in peak flows would have resulted if the flows had not been routed to a very large channel.  Also,
note that the two hydrographs are identical until about hour eleven into the simulation, when the
simulated water table rises to the surface.

Execution time on the IBM 3033 mainframe increased from 0.32 CPU seconds without
the groundwater simulation to 0.42 CPU seconds with the groundwater simulation.  Thus, some
additional computational expense can be expected.

Conclusions
Although the subroutine is fairly simple in design and has several limitations, the new

groundwater subroutine should increase the applicability of SWMM.  Preliminary test runs have
determined it to be accurate in the simulation of water table stage and groundwater flow.  Further
calibration and verification tests need to be done on other areas to confirm these preliminary
results.  Also, estimation of parameters, although fairly numerous, appears to be relatively
uncomplicated.  In addition, parameters are physically based and should be able to be estimated
from soils data.  The flexible structure of the algorithm should permit a more realistic simulation
of catchments in which a major hydrograph component is via subsurface pathways.
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Figure X-14.  Predicted groundwater flow hydrograph and total measured flow hydrograph for
Cypress Creek calibration.
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Figure X-15.  Total predicted flow hydrograph and total measured flow for Cypress Creek
calibration.
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Figure X-16.  Predicted and measured stages for Cypress Creek calibration.

Figure X-17.  Predicted and measured stages for Cypress Creek calibration.
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Figure X-18.  Predicted groundwater flow hydrograph and total measured flow hydrograph for
Cypress Creek verification.
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Figure X-19.  Total predicted flow hydrograph and total measured flow for Cypress Creek
verification.
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Figure X-20.  Hydrograph for hypothetical subcatchment (10-yr SCS Type II design storm for
Tallahassee, Florida).

Figure X-21.  Hydrographs of surface flow and simulated water table stage from hypothetical
subcatchment.  The hydrographs are identical until the water table reaches the surface (20 ft).
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Table X-2.  Fate of Runoff With and Without High Water Table Simulation

Inches Over Total Basin

Water Budget Component With Water Table Simulation Without Water Table Simulation

Precipitation 8.399 8.399

Infiltration 6.637 1.731

Evaporation 0.103 0.104

Channel flow at inlet 1.495 2.407

Water remaining in channel 0.015 0.038

Water remaining on surface 0.150 4.124

Continuity error 0.001 0.005
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